Есть ответ 👍

Найти все корни уравнения cosx + sinx = 1/cosx + sinx = \frac{1}{\sqrt[2]{2}} на интервале x от 0 до pi

116
270
Посмотреть ответы 2

Ответы на вопрос:

Mojo228
4,4(51 оценок)

\cos x + \sin x = \dfrac{1}{\sqrt{2}} \ \ \ \Big| : \sqrt{2}

\dfrac{1}{\sqrt{2}} \cos x + \dfrac{1}{\sqrt{2}}\sin x = \dfrac{1}{2}

\sin \dfrac{\pi}{4} \cos x + \cos \dfrac{\pi}{4} \sin x = \dfrac{1}{2}

\sin \left(\dfrac{\pi}{4} + x \right) = \dfrac{1}{2}

\dfrac{\pi}{4} + x = (-1)^{n} \arcsin \dfrac{1}{2} + \pi n, \ n \in Z

\dfrac{\pi}{4} + x = (-1)^{n} \dfrac{\pi}{6} + \pi n, \ n \in Z

x = -\dfrac{\pi}{4} + (-1)^{n} \dfrac{\pi}{6} + \pi n, \ n \in Z

Если n = 0, то x = -\dfrac{\pi}{4} + (-1)^{0} \dfrac{\pi}{6} + \pi \cdot 0 = -\dfrac{\pi}{12} \notin (0; \ \pi)

Если n = 1, то x = -\dfrac{\pi}{4} + (-1)^{1} \dfrac{\pi}{6} + \pi \cdot 1 = \dfrac{7\pi}{12} \in (0; \ \pi)

Если n =2, то x = -\dfrac{\pi}{4} + (-1)^{2} \dfrac{\pi}{6} + \pi \cdot 2 = \dfrac{23\pi}{12} \notin (0; \ \pi)

Если n = -1, то x = -\dfrac{\pi}{4} + (-1)^{-1} \dfrac{\pi}{6} + \pi \cdot (-1) = -\dfrac{17\pi}{12} \notin (0; \ \pi)

ответ: x = \dfrac{7\pi}{12}

annamikhaylova5
4,5(13 оценок)

X-2< 0 или х+3< 0 или 8х-2< 0 х< 2 или х< -3 или 8х< 2 х< 1/4

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS