Есть ответ 👍

Найти площадь фигуры, ограниченной кривыми
y=2x-x^2 и x+y=0

237
401
Посмотреть ответы 3

Ответы на вопрос:

Skrilleax95
4,7(36 оценок)

Пошаговое объяснение:

площадь фигуры равна определенному интегралу от разницы у₁(х) - у₂(х),

пределы интегрирования - это точки пересечения функций

\int\limits^a_b {(y_{1} -y_{2} } )\, dx

напишем формулы в удобном виде

у₁ = 2х - х²  

у₂ = -х

найдем точки пересечения функций

2х -х² = -х

х²-2х -х =0 ⇒ х²-3х  = 0 ⇒ х(х-3) = 0  ⇒ х₁ = 0, х₂ = 3

это есть точки, где графики пересекаются, и эти же значения есть пределы интегрирования

S = \int\limits^3_0 {((2x-x^{2}) -(-x)) } \, dx = \int\limits^3_0 {(3x -x^{2} )} \, dx =

интеграл разности равен разности интегралов. константу выносим за знак интеграла. получим

= 3\int\limits^3_0 {x} \, dx - \int\limits^3_0 {x^{2} x} \, dx =\left[\begin{array}{ccc}\int\limits {x^{2} } \, dx =\frac{x^{3} }{3} \\\int\limits {x} \, dx = \frac{x^{2} }{2} \\\end{array}\right] =

здесь в скобках указаны табличные интегралы. ими и воспользуемся

(3х² / 2) Ι₀³ - (х³/3) Ι₀³ = -9 + 27/2 = 9/2

S = 9/2

kdortskaya55
4,6(60 оценок)

\displaystyle\\S=-\int\limits^3_0 {(-x-2x+x^2)} \, dx=\int\limits^3_0 {x+2x-x^2} \, dx =\int\limits^3_0 {3x-x^2} \, dx=\\\\\\=(\frac{3x^2}{2}-\frac{x^3}{3})\mid^3_0=\frac{3*3^2}{2}-\frac{3^3}{3}-(\frac{3*0}{2}-\frac{0}{3})=\frac{9}{2}


Найти площадь фигуры, ограниченной кривыми y=2x-x^2 и x+y=0
1220051404
4,8(14 оценок)

17 4/7

Пошаговое объяснение:

(2 1/2+1 1/3) : 1/6-5 3/7= (15/6+8/6) : 1/6-5 3/7=23/6 : 1/6 - 5 3/7= 23 -5 3/7=17 4/7

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS