Есть ответ 👍

Найти область сходимости ряда

206
487
Посмотреть ответы 2

Ответы на вопрос:


ответ: x∈[0;2].

Пошаговое объяснение:

n+1 - й член ряда a(n+1) имеет вид a(n+1)=(x-1)^(n+1)/[2*(n+1)n²]=(x-1)*(x-1)^n/[2*(n+1)²]. Находим отношение n+1 - го члена ряда к n-му: a(n+1)/a(n)=2*n²*(x-1)/[2*(n+1)²]. Так как выражения 2*n² и 2*(n+1)² всегда положительны, то модуль  этого отношения /a(n+1)/a(n)/=/x-1/*2*n²/[2*(n+1)²]. Предел этого выражения при n⇒∞ равен /x-1/ . Составляем неравенство /x-1/<1 и находим его решение: 0<x<2. Поэтому интервал (0;2) является интервалом сходимости для данного ряда. Остаётся исследовать сходимость ряда на концах этого интервала.

1) При x=0 получаем числовой ряд ∑(-1)^n/(2*n²). Ряд, составленный из модулей членов этого ряда, сходится, так его члены 1/(2*n²) меньше соответствующих членов ряда обратных квадратов ∑1/n², который, как известно, сходится. Поэтому в точке x=0 ряд сходится, причём абсолютно.

2) При x=2 получаем ряд ∑1^n/(2*n²)=∑1/(2*n²). Как только что было показано, этот ряд сходится, поэтому и в этой точке ряд сходится.

Поэтому областью сходимости ряда является интервал x∈[0;2].


105 = 35% 1% = 3.5 3.5*40=140 105+105+140=350

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS