Есть ответ 👍

Используя методы доказательства:
Прямым рассуждением докажите истинность высказывания: n и m - четные числа => n+m - число четное.
Дайте обратное доказательство высказывания: n2 — четное число => n - четное.
Методом «от противного» докажите, что n+m — нечетное число => одно из слагаемых является четным, а другое - нечетным.

198
287
Посмотреть ответы 2

Ответы на вопрос:


1. Если числа n и m - четные, то n = 2p, m = 2q, где p и q - целые числа. Тогда n + m = 2p + 2q = 2(p + q) - очевидно, четное число, что и требовалось доказать.

2. Предположим, что n - нечетное, и его квадрат равен четному числу. n = 2p + 1, где p - целое число. Тогда n² = (2p + 1)² = (2p)² + 2 · 2p · 1 + 1² = 4p² + 4p + 1 = 4p(p + 1) + 1 - очевидно, нечетное число при любом целом p. Получили противоречие - следовательно, n - четное.

3. Предположим, что если (n + m) - нечетное число, то возможно, что оба слагаемых являются или числами четными, или числами нечетными.

Если n и m - четные, то n = 2p, m = 2q. Тогда n + m = 2p + 2q = 2(p+q) - четное число, а не нечетное. Получили противоречие - следовательно, числа n и m не могут одновременно быть четными.

Если n и m - нечетные числа, то n = 2p + 1, m = 2q + 1. Тогда n + m = (2p + 1) + (2q + 1) = 2p + 2q + 2 = 2(p + q + 1) - четное, а не нечетное число. Получили противоречие - следовательно, n и m не могут быть нечетными одновременно.

Следовательно, одно из чисел четное, другое - нечетное, что и требовалось доказать.

v1tek2692
4,5(14 оценок)

Спервой выводим у. 4y=20-8x 4y=4(5-2x) y=5-2x со второй находим х. 3(5-2x)^2+4x-5+2x-4=0 75-60x+12x^2+6x-9=0 выходит квадратное уравнение 12x^2-54x+66=0 где d < 0.значит решения нет. так?

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS