Есть ответ 👍

Две плоскости перпендикулярны. Укажите все возможные случаи взаимного расположения прямой, лежащей в одной из этих плоскостей, относительно прямой, лежащей в другой плоскости (проиллюстрируйте свой ответ рисунками

223
470
Посмотреть ответы 1

Ответы на вопрос:

olesay12345
4,4(52 оценок)

напомним некоторые определения

определение:

окружностью с центром в точке о и радиусом r называют множество всех точек плоскости, удаленных от точки о на расстояние r (см. рис. 1).

рис. 1

часть окружности      называется дугой.

дуга имеет угловое измерение.

градусная мера дуги    равна градусной мере соответствующего центрального угла  :

рассмотрим примеры:

рис. 2

определение

угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным.

 

рис. 3

задана окружность с центром о, вершина а лежит на окружности, стороны ав и ас угла пересекают окружность в точках в и с, угол    называется вписанным. он опирается на дугу  , эта дуга расположена внутри угла (см. рис. 3).

2. теорема о вписанном угле

вписанный угол измеряется половиной дуги, на которую он опирается (см. рис. 4).

рис. 4

доказательство:

рассмотрим несколько случаев.

случай 1: точка о принадлежит лучу ас (см. рис. 5).

рис. 5

доказать, что 

обозначим угол    через  , тогда угол    также будет равен  , так как треугольник    равнобедренный, его стороны ов и оа равны как радиусы окружности. угол    является внешним для треугольника  , внешний угол равен сумме двух других углов, не смежных с ним, получаем:   , то есть угловое измерение дуги    есть  . таким образом, мы доказали, что вписанный угол равен половине измерения дуги, на которую он опирается.

случай 2: точка о лежит внутри вписанного угла    (см. рис. 6).

рис. 6

доказать, что 

доказательство сводится к предыдущему случаю. проведем диаметр ad, обозначим угол    за    и тогда дуга    равна    (объяснение см. случай 1). угол    за  , тогда дуга    равна    (объяснение см. случай 1). вся дуга    равна:

угол    в свою очередь, равен  .

таким образом, мы доказали, что вписанный угол равен половине дуги, на которую он опирается.

случай 3: точка о находится вне вписанного угла (см. рис. 7).

рис. 7

доказать, что 

доказательство снова сводится к первому случаю. проведем диаметр ad, обозначим угол    через  , тогда дуга    (объяснение см. случай 1). угол    обозначим через  , тогда дуга    равна    (объяснение см. случай 1). дуга    является разностью большой дуги    и дуги  :

вписанный угол    равен  . таким образом, мы доказали, что вписанный угол равен половине дуги, на которую он опирается.

итак, теорема полностью доказана, все случаи рассмотрены. и теперь из этого вытекают важные следствия.

3. следствия теоремы о вписанном угле

следствие 1:

вписанные углы, опирающиеся на одну и ту же дугу, равны между собой (см. рис. 8).

рис. 8

угол    равен  , он вписанный и опирается на дугу  , значит, дуга равна  . но на эту же дугу опираются много других углов, например, углы    и  , данные углы измеряются половиной градусной меры дуги, значит, они равны  , как и угол  .

таким образом, получаем:

следствие 2

вписанные углы, опирающиеся на диаметр, прямые (см. рис. 9).

рис. 9

теорема о вписанном угле является ключом к доказательству многих других теорем и к решению многих .

4. теорема о хордах

произведение отрезков каждой из двух пересекающихся хорд есть величина постоянная.

рис. 10

доказать, что 

доказательство:

рассмотрим треугольники    и    (см. рис. 10). данные треугольники подобны по равенству двух углов: равны вертикальные углы    и  ; вписанные углы    и    опираются на одну и ту же дугу  . выпишем соотношение подобия:

применим свойство пропорции и преобразуем выражение:

, что и требовалось доказать.

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS