Составить уравнение эллипса, зная, что большая полуось равна 6 и эксцентриситет равен 0,2
Ответы на вопрос:
Объяснение:
где ; очевидно, . Уравнение вида (1) называется каноническим уравнением эллипса.
При указанном выборе системы координат оси координат являются осями симметрии эллипса, а начало координат - его центром симметрии (рис.). Оси симметрии эллипса называются его осями, центр симметрии центром. Точки, в которых эллипс пересекает свои оси, называются его вершинами. На рис. Вершины эллипса суть точки A’, A, B’, B. Часто осями эллипса называются также отрезки A’A=2a и B’B=2b; вместе с тем отрезок ОА=а называют большой полуосью эллипса, отрезок OB=b - малой полуосью.
Если фокусы эллипса расположены на оси Оу (симметрично относительно начала координат), то уравнение эллипса имеет тот же вид (1), но в этом случае ; следовательно, если мы желаем буквой а обозначать большую полуось, то в уравнении (1) нужно буквы а и b поменять местами. Однако для удобства формулировок задач мы условимся буквой а всегда обозначать полуось, расположенную на оси Ох, буквой b - полуось, расположенную на оси Оу, независимо от того, что больше, a или b. Если a=b, то уравнение (1) определяет окружность, рассматриваемую как частный случай эллипса Составить уравнение эллипса, зная, что большая полуось равна 6 и эксцентрисите">
(29^2+2*29*21+21^2)/(26^2-24^2)
((29+21)^2)/(26-24)(26+24)
50^2/(2*50) = 25
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
Maga05200523.05.2023 08:59
-
ksenchhh26.07.2020 00:52
-
AnnHaylen19.05.2023 17:10
-
данилдунаев19.05.2021 06:59
-
Алёна157009.10.2022 21:58
-
Maria200908.08.2020 19:55
-
даша364903.10.2020 17:43
-
арана1918.11.2021 19:21
-
arturk1324.10.2021 21:18
-
Dubrov5ky27.08.2021 21:38
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.