Ответы на вопрос:
Для знаходження площі рівнобедреної трапеції треба знати її основи і висоту, яка є відрізком, проведеним перпендикулярно до основ. В нашому випадку бічна сторона не є висотою, а тому треба знайти її.
За теоремою Піфагора можна знайти довжину бічної сторони, яка є гіпотенузою прямокутного трикутника, утвореного бічною стороною, і половиною різниці основ:
a = √( (10-18/2)^2 + 5^2 )
a = √( (-4)^2 + 5^2 )
a = √( 16 + 25 )
a = √41
Тепер можна знайти площу трапеції за формулою:
S = ((a + b)/2) * h
де a і b - основи трапеції, h - висота трапеції
S = ((18 + 10)/2) * √41
S = (28/2) * √41
S = 14√41 кв. см
Отже, площа рівнобедреної трапеції дорівнює 14√41 кв. см.
За теоремою Піфагора можна знайти довжину бічної сторони, яка є гіпотенузою прямокутного трикутника, утвореного бічною стороною, і половиною різниці основ:
a = √( (10-18/2)^2 + 5^2 )
a = √( (-4)^2 + 5^2 )
a = √( 16 + 25 )
a = √41
Тепер можна знайти площу трапеції за формулою:
S = ((a + b)/2) * h
де a і b - основи трапеції, h - висота трапеції
S = ((18 + 10)/2) * √41
S = (28/2) * √41
S = 14√41 кв. см
Отже, площа рівнобедреної трапеції дорівнює 14√41 кв. см.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
Nastya637614.04.2022 05:50
-
demidboevoff15.02.2022 18:06
-
begemot2003119.07.2022 15:40
-
Почтиматематик289414.09.2020 23:03
-
Сонечка215511.04.2020 01:27
-
анастасиятихая07.05.2020 18:49
-
wadwad1wad30.08.2020 12:07
-
valerapolnikov206.12.2022 21:17
-
mhey330331.05.2023 03:43
-
Danulchukik22.07.2022 21:38
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.