hyihy
27.09.2021 17:06
Литература
Есть ответ 👍

Теорема. Около любого треугольника можно описать окружность и притом только одну.

В отличие от треугольника около четырехугольника не всегда можно описать окружность. Например: ромб.

Теорема. В любом вписанном четырехугольнике сумма противоположных углов равна 1800.

Если сумма противоположных углов четырехугольника равна 1800, то около него можно описать окружность.

Для того чтобы четырехугольник АВСD был вписанным, необходимо и достаточно, выполнения любого из следующих условий

Окру́жность — это фигура, которая состоит из всех точек на плоскости, равноудаленных от данной точки. Эта точка называется центром окружности.

Окружность нулевого радиуса (вырожденная окружность) является точкой, иногда этот случай исключается из определения

Теорема. В любой треугольник можно вписать окружность и притом только одну.
Не во всякий четырехугольник можно вписать окружность. Например: прямоугольник, не являющийся квадратом.

Теорема. В любом описанном четырехугольнике суммы длин противоположных сторон равны.

Если суммы длин противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

Для того чтобы выпуклый четырехугольник ABCD являлся описанным, необходимо и достаточно, чтобы выполнялось условие AB+DC=BC+AD (суммы длин противоположных сторон равны).

Центр окружности равноудален от сторон многоугольника, значит, совпадает с точкой пересечения биссектрис углов многоугольника (свойство биссектрисы угла). Радиус равен расстоянию от центра окружности до сторон многоугольника.

300
500
Посмотреть ответы 1

Ответы на вопрос:

ladygum78
4,4(37 оценок)

четырёхстобные стихотворения

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Литература

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS