всего 2 задания
1. Найдите область определения и область значений бинарного отношения
R ={(а,в)| а,в ∈А, а+ в = 6}, если A = { 1,2,3, 4, 5}. Составить матрицы инцидентности для δR, ρR и найти матрицу их композиции.
Ответы на вопрос:
Пошаговое объяснение:
Задача 1. Определите свойства следующих отношений:
1. «прямая x пересекает прямую y» (на множестве прямых)
2. «число x больше числа y на 2» (на множестве натуральных чисел)
3. «число x делится на число y без остатка» (на множестве натуральных чисел)
4. «x - сестра y» (на множестве людей).
Решение задач о свойствах отношений
Задача 2. Проверить, является ли отношением эквивалентности на множестве всех прямых на плоскости отношение «непересекающихся прямых».
Решение задачи об отношении эквивалентности
Задача 3. Найти область определения, область значений отношения Р. Является ли отношение Р рефлексивным, симметричным, антисимметричным, транзитивным.
Проверка свойств отношения
Задача 4. Дано множество А={>,<,≥,≤}. Записать декартовое произведение А×А. Задать 2 бинарных отношения R1 и R2, мощность которых равна 3 и 4 соответственно. Найдите соответствующие замыкания обоих отношений. Изобразите ориентированные графы и запишите матрицы для отношений R1 и R2 и соответствующих замыканий. Вычислите R−11, R−12, R2⋅R1. Изобразите соответствующие ориентированные графы и запишите соответствующие матрицы.
Решение задачи о бинарных отношениях
Задача 5. Отношение R на множестве Х={a,b,c,d} задано матрицей.
Каковы свойства отношения R? Как выглядят матрицы отношений R−1, R⋅R?
Решение задачи о матрице отношения
Задача 6. Дано множество A={1,2,3,4,5} и бинарное отношение R⊂A×A:
Проверить, является ли R отношением эквивалентности. Добавить минимальное возможное число пар, чтобы R стало отношением эквивалентности. Найти разбиение P.
Решение задачи об отношении эквавалентности
Задача 7. Доказать, что для любых бинарных отношений
(P1∘P2)−1=P−12∘P−11
Доказательство свойства бинарных отношений
Задача 8. Доказать истинность следующего утверждения: если Р и S – антисимметричны, то P∩S – антисимметрично.
Решение задачи об антисимметричности отношений
Задача 9. Для заданных на множестве А={1,2,3,4,5} бинарных отношений ρ и τ:
а) записать матрицы и построить графики;
б) найти композицию ρ∘τ;
в) исследовать свойства отношений ρ, τ и ρ∘τ (рефлексивность, иррефлексивность, симметричность, антисимметричность, транзитивность).
Решение задачи о бинарных отношениях (Ткачев)
Задача 10. На множестве вещественных чисел R задано бинарное отношение aρb ⇔a2+a=b2+b. Докажите, что ρ – отношение эквивалентности. Сколько элементов в классе эквивалентности?
Решение задачи о классах эквивалентности
Задача 11. Для бинарного отношения ρ между элементами множеств A={1,2,3,4,5}, B={{1},{1,2},{2,5},{3}}, aρX⇔a∉X найдите область определения Dρ и область значений Rρ?
Решение задачи об области определения и значения отношения
Задача 12. Дано множество X={1,2,3,6} и отношение R={(x,y)|x,y∈X,x− делитель y}. Показать, что отношение R является отношением порядка. Построить диаграмму Хассе частично упорядоченного множества (X,R). Существует ли в множестве X наибольший и наименьший элементы? Существуют ли несравнимые элементы?
Решение задачи об отношении порядка
Решение задач об отношениях на заказ
Выполняем для студентов очников и заочников решение заданий, контрольных и практических работ по любым разделам теории бинарных отношений на заказ. Также оказываем в сдаче тестов. Подробное оформление, таблицы, графики, пояснение, использование специальных программ при необходимости. Стоимость примера от 100 рублей, оформление производится в Word, срок от 2 дней.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
olya36304.05.2022 19:22
-
dlyaigrmoih103.04.2022 20:06
-
alexaste25.08.2022 17:23
-
dashvali21.03.2021 20:37
-
ник23090322.06.2021 04:42
-
Nastasyalook131.01.2020 18:51
-
Арте2031.03.2022 09:50
-
Андрей2053110.02.2022 15:18
-
moda71230.06.2023 05:04
-
jurakos924.01.2022 20:53
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.