Есть ответ 👍

Всегда ли в равнобокую трапецию можно вписать окружность? Объяснить почему

281
492
Посмотреть ответы 2

Ответы на вопрос:


В равнобедренную трапецию можно вписать окружность, но не в любую. Согласно свойству описанного вокруг окружности четырехугольника для того, чтобы в четырехугольник (в данном случае в трапецию) можно было вписать окружность, необходимо, чтобы суммы пар противоположных сторон этого четырехугольника были равны.

Объяснение:

gmagima
4,8(31 оценок)

1. 60

2. АВ = 70°, АС = ВС = 145°.

Объяснение:

1.

Дано:

Окружность (О; r)

∠OBA = 30°

CA — касательная

Найти:

∠BAC — ?

_______________

1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).

У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.

2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.

3) ∠BAC = ∠OAC - ∠OAB.

∠BAC = 90° - 30° = 60°.

2 Задача

Если О - центр окружности, то угол АОВ - центральный.

Центральный угол равен дуге, на которую опирается. Отсюда, дуга АВ = 70°.

Угол САВ = углу СВА, тогда дуга АС = дуге ВС = (360° - 70°) / 2 = 290° / 2 = 145°.

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS