2 . 4 . 12 скажите правильно ли решила задачу ? Или может быть ещё как можно решить такую задачу! Если не правильно то почему? и + поставлю пример лучший
138
500
Ответы на вопрос:
1)
Произведением вектора a→ на число k ( k ≠0) называется вектор b→, модуль которого равен ∣∣∣b→∣∣∣=∣∣k∣∣⋅∣∣a→∣∣, при этом:
- векторы a→ и b→ сонаправлены, если >0;
- векторы a→ и b→ противоположно направлены, если <0.
2) Если вектор b равен произведению ненулевого числа k и ненулевого вектора a, то есть b = k · a, тогда:
b || a - вектора b и a параллельны
a↑↑b, если k > 0 - вектора b и a сонаправленные, если число k > 0
a↑↓b, если k < 0 - вектора b и a противоположно направленные, если число k < 0
|b| = |k| · |a| - модуль вектора b равен модулю вектора a умноженному на модуль числа k
Произведением вектора a→ на число k ( k ≠0) называется вектор b→, модуль которого равен ∣∣∣b→∣∣∣=∣∣k∣∣⋅∣∣a→∣∣, при этом:
- векторы a→ и b→ сонаправлены, если >0;
- векторы a→ и b→ противоположно направлены, если <0.
2) Если вектор b равен произведению ненулевого числа k и ненулевого вектора a, то есть b = k · a, тогда:
b || a - вектора b и a параллельны
a↑↑b, если k > 0 - вектора b и a сонаправленные, если число k > 0
a↑↓b, если k < 0 - вектора b и a противоположно направленные, если число k < 0
|b| = |k| · |a| - модуль вектора b равен модулю вектора a умноженному на модуль числа k
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
mon1313.06.2021 20:26
-
valare33811.01.2020 19:33
-
Слава20010922.03.2023 10:07
-
Danik0772730.12.2022 16:27
-
Regina220302114.04.2021 17:48
-
маша305508.08.2022 20:25
-
впнекккккк12.08.2020 20:26
-
Simpson01122.11.2021 07:33
-
PollyPanda0712.09.2021 23:21
-
atodyshevoxz3kh24.03.2023 13:40
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.