Есть ответ 👍

Напишите уравнение касательной к графику функции

f (x) = 4^x в точке 0 = 1.

169
371
Посмотреть ответы 2

Ответы на вопрос:

ZigZag1983
4,4(67 оценок)

Уравнение касательной к графику функции в данной точке: y=f'(x0)x+(f(x0)−x0f'(x0)).

(У касательной y=kx+b угловой коэффициент \(k\) равен значению производной в данной точке, к тому же, касательная проходит через точку (x0;f(x0)). Из этого получается уравнение f(x0)=f'(x0)x0+b, из которого выражается коэффициент b.)

Вначале находим угловой коэффициент касательной:

f'(x)=(x2+3x+4)'=2x+3f'(x0)=2⋅1+3=5

Затем находим коэффициент b из уравнения касательной:

f(x0)−x0f'(x0)=(12+3⋅1+4)−1⋅5=3

Значит, уравнение касательной имеет вид: y=5x+3.

Zarinochka1998
4,6(65 оценок)

решение смотри на фотографии


. и лучший ответ за два выражения (на картинке) Заранее !!

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS