Есть ответ 👍

Доказать, что в последовательности 2014,20142014, нет такого числа, которое является квадратом целого числа

272
397
Посмотреть ответы 2

Ответы на вопрос:


Пример :   условие доказать, что нет такого числа в последовательности 11, 111, 1111, которое является квадратом целого числа. подсказка найдите последнюю цифру числа, квадрат которого мы ищем. что можно сказать о предпоследней цифре числа. решение 1-ое решение. если квадрат некоторого числа оканчивается на 1, то само число может оканчиваться на 1 или 9, т.е. число можно записать в виде a=10*n+1 или a=10n+9, если числа указанного вида возвести в квадрат, то предпоследняя цифра будет четной, а последняя цифра данных чисел 1, следовательно, данные числа не являются квадратами. 2-ое решение. числа, данные в условии, можно записать в виде 11+100n и заметить, что при делении на 4 получим остаток 3. квадрат четного числа при делении на 4 дает остаток 0, а квадрат нечетного числа при делении на 4 дает остаток 1 (воспользуйтесь формулой возведения в квадрат чисел вида 2n+1), следовательно, числа указанного типа не являются квадратами.

ОТВЕТ:нужна взять дропь умножить на целое разделить на красное и все

Пошаговое объяснение:

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS