Есть ответ 👍

Даны координаты вершин треугольника. a(2; -1), b(3; 0), c(-1; 4). 1) составить уравнение сторон 2) уравнение высот 3) уравнение прямых, проходящих через вершину параллельных сторон 4) уравнение медиан

189
359
Посмотреть ответы 2

Ответы на вопрос:

SomikBOOM
4,4(50 оценок)

Уравнение сторон ав = ( (x-2)/1= (y+1)/1 => y=x-3 ) bc = ( у=3-x ) ac = ( (x-2)/-3 = (y+1)/5 => у=(-5х+7)/3 уравнение высот уравнение высоты через вершину b прямая, проходящая через точку n0(x0; y0) и перпендикулярная прямой ax + by + c = 0 имеет направляющий вектор (a; b) и, значит, представляется уравнениями: y =  3/5x -  9/5  или 5y -3x +9 = 0 данное уравнение можно найти и другим способом. для этого найдем угловой коэффициент k1  прямой ac. уравнение ac: y =  -5/3x +  7/3, т.е. k1  =  -5/3 найдем угловой коэффициент k перпендикуляра из условия перпендикулярности двух прямых: k1*k = -1. подставляя вместо k1  угловой коэффициент данной прямой, получим : -5/3k = -1, откуда k =  3/5 так как перпендикуляр проходит через точку b(3,0) и имеет k =  3/5,то будем искать его уравнение в виде: y-y0  = k(x-x0). подставляя x0  = 3, k =  3/5, y0  = 0 получим: y-0 =  3/5(x-3) или y =  3/5x -  9/5  или 5y -3x +9 = 0 найдем точку пересечения с прямой ac: имеем систему из двух уравнений: 3y + 5x - 7 = 0 5y -3x +9 = 0 из первого уравнения выражаем y и подставим во второе уравнение. получаем: x =  31/17 y =  -12/17 d(31/17; -12/17 ) уравнение медиан для стороны вс: обозначим середину стороны bc буквой м. тогда координаты точки m найдем по формулам деления отрезка пополам. m(1; 2) уравнение медианы am найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. медиана aм проходит через точки a(2; -1) и м(1; 2), поэтому: каноническое уравнение прямой: или или y = -3x + 5 или y + 3x - 5 = 0 для стороны ав: обозначим середину стороны ab буквой м. тогда координаты точки m найдем по формулам деления отрезка пополам. m(5/2; -1/2) уравнение медианы cm найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. медиана cм проходит через точки c(-1; 4) и м(5/2; -1/2), поэтому: каноническое уравнение прямой: или или y =  -9/7x +  19/7   или 7y + 9x - 19 = 0 для стороны ас обозначим середину стороны ac буквой м. тогда координаты точки m найдем по формулам деления отрезка пополам. m(1/2; 3/2) уравнение медианы bm найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. медиана bм проходит через точки b(3; 0) и м(1/2; 3/2), поэтому: каноническое уравнение прямой: или или y =  -3/5 x +  9/5   или 5y + 3x - 9 = 0длс стороны всобозначим середину стороны bc буквой м. тогда координаты точки m найдем по формулам деления отрезка пополам. m(1; 2) уравнение медианы am найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. медиана aм проходит через точки a(2; -1) и м(1; 2), поэтому: каноническое уравнение прямой: или или y = -3x + 5 или y + 3x - 5 = 0
ujbgb
4,6(62 оценок)

3.02^2=9.1204 3*3.02=9.06 f(3.02)=9.1204+9.06+1=19.1804, округляем до сотых 19.18 (0.975)^4=0.90368789 округляем до тысячных 0.904 

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS