Геометрия
Задача 1. Основанием пирамиды DABC является треугольник ABC, у которого
AB=AC=13см, BC=10см; ребро AD перпендикулярно к плоскости основания и
равно 9см. Найдите площадь боковой поверхности пирамиды.
Задача 2. Основанием пирамиды является прямоугольник, диагональ которого
равна 8см. Плоскости двух боковых граней перпендикулярны к плоскости
основания, а две другие боковые грани образуют с основанием углы в 300 и 450
.
Найдите площадь поверхности пирамиды.
Задача 3. В правильной треугольной пирамиде SABC M – середина ребра AB,
S - вершина. Известно, что BC = 4, SM = 29. Найдите площадь боковой
поверхности.
Задача 4. Стороны оснований правильной треугольной усеченной пирамиды
равны 4дм и 2дм, а боковое ребро равно 2дм. Найти высоту и апофему пирамиды.
Ответы на вопрос:
1) Sбок= 13*9 + 5*15= 117 + 75= 192 см^2
3) Длина отрезка ВС равна 4 см.
4) Апофема равна sqrt(3), высота усеченной пирамиды равна 2*sqrt(2/3)
Объяснение:
1) Запишем формулу площади параллелограмма для высоты ВН и стороны AD:
S=ВН*AD
36ВН=360
ВН=10
Запишем формулу площади параллелограмма для высоты ВR и стороны CD:
S=ВR*CD
20ВR=360
ВR=18
Прямоугольные треугольники АРО и OFC равны по гипотенузе и острому углу: АО=ОС (диагонали точкой пересечения делятся пополам) , углы ОАР и ОСF равны (накрест лежащие при параллельных прямых AD и ВС и секущей АС) .
Это означает, что OP=OF=(1/2)PF=(1/2)BH=5
Также и для треугольников ОТВ и ОМD: ОТ=ОМ=(1/2)TM=(1/2)BR=9
Соединим точки М и К (рис а) . Прямая МК перпендикулярна СD по теореме о трех перпендикулярах.
Из прямоугольного треугольника КОМ определим КМ по теореме Пифагора: КМ=15
Также соединим точки Р и К (рис а) . Прямая РК перпендикулярна АD по теореме о трех перпендикулярах.
Из прямоугольного треугольника КОР определим КР по теореме Пифагора: КР=13
Противоположные боковые грани пирамиды равны (по трем сторонам: у параллелограмма противоположные стороны равны, все боковые ребра данной пирамиды равны) , а значит равны и их площади. Поэтому формулу площади боковой поверхности запишем так:
Sбок=2Sakd+2Sckd
Sбок=2*(1/2)*AD*KP+2*(1/2)*DC*KM
Sбок=36*13+20*15=768.
1) Проведем AK перпендикулярно BC, тогда ВС перпендикулярно DK (по теореме о трех перпендикулярах) , т. е. DK - высота треугольника DBC.
2) Из треугольника АВК получаем: AK = корень (AB^2 + BK^2) = корень (169-25)=корень (144)=12.
3) Из треугольника DAK имеем: DK = корень (DA^2 + AK^2) = корень (81+144) = корень (225) = 15.
4) треугольник ADB = треугольнику ADC (по двум катетам) .
Sбoк = 2Sadb + Sbdc;
Sбок= 13*9 + 5*15= 117 + 75= 192 см^2.
3) Так как точка М середина ребра ВС, то отрезок SМ есть медиана боковой грани SBC. Так как боковая грань правильной пирамиды есть равносторонний треугольник, то медиана SМ так же его высота.
Боковые грани правильной пирамиды равновелики, тогда Sбок = 3 * Ssвс.
Ssвс = 174 / 3 = 58 см2.
Площадь боковой грани SBC равна: Ssвс = BC * SМ / 2 = 58.
ВС = Ssвс * 2 / SM = 58 * 2 / 29 = 4 см
4) Из рисунка,
ВС равно половине большего основания:
BC = 4 дм / 2 = 2 дм
AD равно половине меньшего основания:
AD = 2 дм / 2 = 1 дм
Если провести параллельный отрезок DB1 из точки D параллельно AB до ребра BC большего основания, то получится треугольник, причём:
B1C = BC - AD = 2 - 1 = 1 дм
DB1 = AB
Мы получили прямоугольный треугольник DB1C,
теорема Пифагора для него:
DB1^2 + B1C^2 = DC^2, подставляем
DB1^2 + 1^2 = 2^2
DB1^2 = 4 - 1 = 3
DB1 = sqrt(3) - корень из трех
F = AB = DB1 = sqrt(3)
Осталось найти высоту H:
Т к большее основание - правильный треугольник, то OB - это перпендикуляр к BC
Делаем тоже самое - проводим параллельный отрезок отрезку H, но из точки A и второй точкой A1 на большем основании
Так как ребра равнобедренных оснований большего в два раза больше меньшего, то исходя из симметрии оснований BO = 2 AO1
Тогда BA1 = AO1 = A1O = BO/2
Теперь рассмотрим треугольник BOC - прямоугольный
угол BCO = 60 / 2 = 30 град - половине угла равнобедренного треугольного основания.
Значит угол BOC = 180 - 90 - 30 = 60 град
Тогда из соотношения синуса:
BC / sin(60) = BO / sin(30)
BC = 2
BO = 2 * sin(30) / sin(60) = 2 * 0.5 / (sqrt(3) / 2) = 2 / sqrt(3)
значит BA1 = BO/2 = 2 / sqrt(3) / 2 = 1/sqrt(3)
но по правилу Пифагора:
F^2 = BA1^2 + H^2
подставляем
sqrt(3)^2 = 1/sqrt(3)^2 + H^2
H^2 = 3 - 1/3 =(9 - 1)/3 = 8/3
H = sqrt(8)/sqrt(3) = 2*sqrt(2/3)
^ - это степень
* - это знак умножения
\ - это черта дроби
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
mitrofanovas63325.12.2022 15:37
-
sohibjon45713.03.2022 02:40
-
alenakoslova27.02.2020 19:18
-
Vikzza01.11.2021 05:28
-
GiFka3412.06.2022 22:36
-
aliaidi12.09.2022 07:18
-
alholod2p00me019.05.2023 09:11
-
виктория90713.02.2021 11:06
-
Сиплел08.11.2021 13:31
-
1704198318.07.2022 23:24
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.