mcghcnnbn
08.02.2020 22:31
Алгебра
Есть ответ 👍

Решите неравенства:
1)-4x^2+2x-0,25≤0;
2)2x^2+2x-1≥0;
3)25х^2+30x+9>0;
4)-9x^2+12x-4<0;
5)x^2-36>0

118
185
Посмотреть ответы 2

Ответы на вопрос:

Alexa9711
4,4(18 оценок)

решите неравенство 3/(2^(2-x^2)-1)^2-4/(2^(2-x^2)-1)+1>=0

===========

 3/(2^(2 - x²) -1)² - 4/(2^(2- x²) -1) + 1  ≥  0  ;

замена :   t = 2^(2-x²) -1

3 / t² - 4 / t  +1  ≥  0  ;

(t² - 4t +3) / t²  ≥  0 

для квадратного трехчлена  t² - 4t +3    t₁=1  корень: 1² - 4*1+3 = 1- 4+3 =0.

t₂ =3/t₁=3/1=1 (или  t₂ =4 -1=3)  

* * * наконец  можно  и решить  уравнение t² - 4t +3=0 * * *

(t² - 4t +3) / t²  ≥  0  ⇔ (t -1)(t - 3) / t²   ≥  0 .

           +               +                        -                      +

/////////////////// (0)//////////// [1] --------------------[ 3]///////////////////////

* * * совокупность неравенств [ { t  ≤ 1 ; t ≠0  .   {  t ≥ 3  * * *

a)

{ 2^(2-x²) -1  ≤ 1 ; 2^(2-x²) -1 ≠ 0 .⇔ { 2^(2-x²) ≤ 2  ; 2^(2-x²)  ≠ 1 . ⇔

{ 2^(2-x²) ≤ 2¹  ; 2^(2-x²)  ≠ 2⁰.⇔ {2-x²  ≤ 1 ; 2 - x² ≠ 0.⇔{ x² -1 ≥ 0 ; x² ≠ 2⇔

{ (x+1)(x-1) ≥ 0 ;  x ≠ ±√2 .  ⇒   x∈  ( -∞ ; -√2 ) ∪  (-√2 ; -1] ∪ [1 ; √2) U  (√2 ; ∞) .

b)

2^(2-x²) -1  ≥ 3 ⇔ 2^(2-x²)  ≥ 4 ⇔2^(2-x²)  ≥ 2² ⇔2- x²  ≥ 2 ⇔ x² ≤ 0  ⇒ x=0.

ответ:   x∈  ( -∞ ; -√2 ) ∪  (-√2 ; -1] ∪ { 0} ∪  [1 ; √2) U  (√2 ; 

Объяснение:

arnalismailov
4,4(10 оценок)

 

найдём точки пересечения:

 

 

 

 

так как графики функций симметричны относительно оси оу, то тангенс угла наклона между кривыми в первой точке, совпадет с тангенсом угла наклона между кривыми во второй и имеет смысл рассматривать только одну точку. пусть это будет точка с абсциссой x = 2.

 

 

 

 

найдём касательные по формуле

 

 

 

 

тангенс угла между касательными:

 

 

 

 

 

 

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS