Впараллелограмме abcd проведены перпендикуляры be и df к диагонали ac. докажите , что bfde - параллелограмм.
246
434
Ответы на вопрос:
Впараллелограмме abcd проведены перпендикуляры be и df к диагонали ac. be|| df, т к прямые, перпендикулярные к одной прямой параллельны. прямоугольные треугольники аве и dfc равны по гипотенузе и острому углу (ab=cd, угол bae=углу dcf), из равенства следует be = df, тогда четырехугольник bfde - параллелограмм по признаку (если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник - параллелограмм)
Треугольник аве равен треугольнику cdf, т.к. ав=сд, угол 1=углу 2, как накрест лежащие при параллельных прямых ав и сд и секущей ас. треугольники прямоугольные равны по гипотенузе и острому углу. а в равных треугольниках против равных углов лежат равные стороны. значит be=fd. но они ещё и параллельны, как 2 перпендикуляра к одной прямой. отсюда треугольники def и def равны к прямоугольные, по двум катетам. а в равных треугольниках против равных углов лежат равные стороны. против угла f лежит сторона ед против угла е лежит сторона bf. значит они равны. а если в четырехугольнике противолежащие стороны попарно равны, то это параллелограмм. что и требовалось доказать.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
Аня23015603.07.2020 04:18
-
Mimi6739209.12.2021 11:19
-
Begkakaaa21.08.2022 08:32
-
Ната91126.12.2021 01:52
-
Ксюшка22122.07.2021 18:01
-
Алёнка1208200411.01.2021 13:07
-
maymiz17.02.2021 03:46
-
Anzelka1314.09.2020 13:15
-
lena170004.09.2022 23:46
-
nnnnnastasi29.11.2022 01:57
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.