ЗА ВСЕ 50 БАЛЛОВ!
Вариант 1.Даны векторы а (3: 1), 6 (2; -4), c(-1; 1), Найти: a) ab; 6) b (a + c). 2. Точки А (1: 5), В (4; 1), С (7; -3) с вершинами треугольника. Найти косинусы углов этого треугольника. 3. Даны векторы а (1; -1) и б (-2, 1). Найти такое число m, чтобы вектор а + mb был перпендикулярен к вектору а.
Вариант 2.Даны векторы а (3: 1), 6 (2; -4), с (-1; 1), Найти: a) bс; 6) с (ā + b). 2. Точки А (2: 3), В (-1; 1). С (-4; -5) являются вершинами треугольника. Найти
косинусы углов этого треугольника. 3. Даны векторы а (-1; 1) и 6 (1: 2). Найти такое число n, чтобы вектор na + b был перпендикулярен к вектору а.
Ответы на вопрос:
в любом равнобедренном треугольнике: 1) углы при основании равны; 2) медиана, биссектриса и высота, проведенные к основанию, .
доказательство. оба эти свойства доказываются совершенно одинаково. рассмотрим равнобедренный треугольник авс, в котором ав = вс. пусть вв1 - биссектриса этого треугольника.как известно, прямая bb1 является ось симметрии угла авс. но в силу равенства ab = bc при той симметрии точка а переходит в с.следовательно, треугольники abb1 и cbb1 равны. отсюда все и следует. ведь в равных фигурах равны все соответствующие элементы. значит, ðbab1 = ðbcb1. пункт 1) доказан. кроме этого, ab1 = cb1, т. е. bb1 - медиана и ðbb1a = ðbb1c = 90°; таким образом, bb1 также и высота треугольника abc. t
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
sadko7777723.04.2021 01:08
-
ДинараДей02.04.2020 23:15
-
Тень225321.09.2022 20:15
-
linvliv07.03.2020 12:59
-
natalykoposova16.02.2022 17:50
-
Анжеkf2301.01.2022 01:25
-
Andrey20069413.02.2020 02:00
-
semik123211.04.2023 10:07
-
ilovemath77723.06.2020 15:56
-
olesyaandreeva104.07.2021 20:14
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.