В треугольнике KLR проведена высота LN.
Известно, что ∡ LKR = 18° и ∡ KLR = 129°.
Определи углы треугольника NLR
∡ LNR =
°;
∡ NLR =
°;
∡ LRN =
252
263
Ответы на вопрос:
Равнобедренного может? если да , то вот . в равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны. доказательство: пусть abc - равнобедренный треугольник (ac = bc), ak и bl - его биссектрисы. треугольники akb и alb равны по второму признаку равенства треугольников. у них сторона ab общая, углы lab и kba равны как углы при основании равнобедренного треугольника, а углы lba и kab равны как половины углов при основании равнобедренного треугольника. так как треугольники равны, их стороны ak и lb - биссектрисы треугольника abc - равны. теорема доказана. теорема d3. в равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны. доказательство: пусть abc - равнобедренный треугольник (ac = bc), ak и bl - его высоты. тогда углы abl и kab равны, так как углы alb и akb прямые, а углы lab и abk равны как углы при основании равнобедренного треугольника. следовательно, треугольники alb и akb равны по второму признаку равенства треугольников: у них общая сторона ab, углы kab и lba равны по вышесказанному, а углы lab и kba равны как углы при основании равнобедренного треугольника. если треугольники равны, их стороны ak и bl тоже равны. что и требовалось доказать.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
nastya89296806029.11.2020 03:56
-
zoga200313.05.2022 14:23
-
крымнаш27.05.2020 11:19
-
машина3418.11.2021 23:50
-
avraval200909.02.2020 02:28
-
Carlso300011.01.2022 03:06
-
HappyMen1113.02.2022 14:43
-
Chelyabin28.06.2020 16:57
-
apabud22.03.2022 10:13
-
TheGrigory15.12.2020 09:10
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.