Четырёхугольник ABCD задан координатами своих вершин A (2; 5), B (–3; 7), C (–6; 2), D (–1; –1). Выполните построения и укажите координаты вершин четырёхугольника A1B1C1D1, полученного путём параллельного переноса на вектор a{3,-2} из четырёхугольника ABCD. ответ: А1 ( ; ), В1 ( ; ), С1 ( ; ), D1
Ответы на вопрос:
Объяснение:
По теореме Пифагора :
АВ=корень (ВС^2-АС^2)=
корень (24^2-7^2)=корень (576+49)=
=корень 625=25 см
Медиана, проведённая из вершины прямого угла равна половине гипотенузы :
СМ=1/2×АВ=1/2×25=25/2=12,5 см
Острый угол между гипотенузой и медианой
это угол СМА, т. к против меньшей стороны лежит меньший угол (у тр-ков ВСМ и СМА боковые стороны равны, а сторона АС меньше стороны ВС, значит <СМА меньший)
Тр-к СМА - равнобедренный (СМ=АМ),
МН - высота и медиана.
АН=АС:2=7:2=3,5 см
Тр-к НМА - прямоугольный,
По теореме Пифагора :
МН=корень (АМ^2-АН^2) =
=корень (12,5^2-3,5^2)=корень 144=12 см
S=1/2×AC×MH=1/2×7×12=42 cм^2
S=1/2×CM×AM×sin<CMA=
=1/2×12,5×12,5×sin<CMA
42=78,125×sin<CMA
sin<CMA=42:78,125=0,5376
По теореме косинусов :
cos<CMA=(CM^2+AM^2-AC^2)/(2×CM×AM) =
=(12,5^2+12,5^2-7^2)/(2×12,5×12,5)=
=(156,25+156,25-49)/312,5=
=263,5/312,5=0,8432
ответ : sin<CMA=0,5376
cos<CMA=0,5376
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
karikovt24.02.2023 16:33
-
dbblyadbblya12.05.2022 18:08
-
arturk1308.08.2022 12:52
-
nikakoheleva1423.06.2021 10:41
-
Lera20071003.07.2022 06:40
-
barnyrossa15.01.2020 01:20
-
oksanavolkova319.05.2023 11:47
-
Vsevolod2014105.07.2020 13:28
-
ADAMREUS08.10.2020 19:02
-
Hydini23.06.2023 00:15
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.