Ответы на вопрос:
Объяснение:
В ΔС₁В₁D₁ , EF ║В₁D₁ по т. о средней линии треугольника.
В прямоугольнике В₁D₁DВ противоположные стороны параллельны , значит В₁D₁║DВ. Поэтому вектор ЕF сонаправлен с векторами В₁D₁ и ВD.
2)Три вектора называются компланарными, если при откладывания от общего началу, лежат в одной плоскости. Боковые ребра параллелепипеда параллельны, значит м вектора АА₁, СС₁, ВВ₁ , при откладывания от общего началу,будут лежать в одной плоскости
Проследим за тем, как формируются представление о синусе, косинусе, тангенсе и котангенсе в школьном курсе математики. На уроках геометрии дается определение синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике. А позже изучается тригонометрия, где говорится о синусе, косинусе, тангенсе и котангенсе угла поворота и числа. Приведем все эти определения, приведем примеры и дадим необходимые комментарии.
Острого угла в прямоугольном треугольнике
Из курса геометрии известны определения синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике. Они даются как отношение сторон прямоугольного треугольника. Приведем их формулировки.
Определение.
Синус острого угла в прямоугольном треугольнике – это отношение противолежащего катета к гипотенузе.
Определение.
Косинус острого угла в прямоугольном треугольнике – это отношение прилежащего катета к гипотенузе.
Определение.
Тангенс острого угла в прямоугольном треугольнике – это отношение противолежащего катета к прилежащему.
Определение.
Котангенс острого угла в прямоугольном треугольнике – это отношение прилежащего катета к противолежащему.
Там же вводятся обозначения синуса, косинуса, тангенса и котангенса – sin, cos, tg и ctg соответственно.
Например, если АВС – прямоугольный треугольник с прямым углом С, то синус острого угла A равен отношению противолежащего катета BC к гипотенузе AB, то есть, sin∠A=BC/AB.
Эти определения позволяют вычислять значения синуса, косинуса, тангенса и котангенса острого угла по известным длинам сторон прямоугольного треугольника, а также по известным значениям синуса, косинуса, тангенса, котангенса и длине одной из сторон находить длины других сторон. Например, если бы мы знали, что в прямоугольном треугольнике катет AC равен 3, а гипотенуза AB равна 7, то мы могли бы вычислить значение косинуса острого угла A по определению: cos∠A=AC/AB=3/7.
К началу страницы
Угла поворота
В тригонометрии на угол начинают смотреть более широко - вводят понятие угла поворота. Величина угла поворота, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов, угол поворота в градусах (и в радианах) может выражаться каким угодно действительным числом от −∞ до +∞.
В этом свете дают определения синуса, косинуса, тангенса и котангенса уже не острого угла, а угла произвольной величины - угла поворота. Они даются через координаты x и y точки A1, в которую переходит так называемая начальная точка A(1, 0) после ее поворота на угол α вокруг точки O – начала прямоугольной декартовой системы координат и центра единичной окружности.

Определение.
Синус угла поворота α - это ордината точки A1, то есть, sinα=y.
Определение.
Косинусом угла поворота α называют абсциссу точки A1, то есть, cosα=x.
Определение.
Тангенс угла поворота α - это отношение ординаты точки A1 к ее абсциссе, то есть, tgα=y/x.
Определение.
Котангенсом угла поворота α называют отношение абсциссы точки A1 к ее ординате, то есть, ctgα=x/y.
Синус и косинус определены для любого угла α, так как мы всегда можем определить абсциссу и ординату точки, которая получается в результате поворота начальной точки на угол α. А тангенс и котангенс определены не для любого угла. Тангенс не определен для таких углов α, при которых начальная точка переходит в точку с нулевой абсциссой (0, 1) или (0, −1), а это имеет место при углах 90°+180°·k, k∈Z (π/2+π·k рад). Действительно, при таких углах поворота выражение tgα=y/x не имеет смысла, так как в нем присутствует деление на нуль. Что же касается котангенса, то он не определен для таких углов α, при которых начальная точка переходит к в точку с нулевой ординатой (1, 0) или (−1, 0), а это имеет место для углов 180°·k, k∈Z (π·k рад).
Итак, синус и косинус определены для любых углов поворота, тангенс определен для всех углов, кроме 90°+180°·k, k∈Z (π/2+π·k рад), а котангенс – для всех углов, кроме 180°·k, k∈Z (π·k рад).
В определениях фигурируют уже известные нам обозначения sin, cos, tg и ctg, они используются и для обозначения синуса, косинуса, тангенса и котангенса угла поворота (иногда можно встретить обозначения tan и cot, отвечающие тангенсу и котангенсу). Так синус угла поворота 30 градусов можно записать как sin30°, записям tg(−24°17′) и ctgα отвечают тангенс угла поворота −24 градуса 17 минут и котангенс угла поворота α. Напомним, что при записи радианной меры угла обозначение «рад» часто опускают. Например, косинус угла поворота в три пи рад обычно обозначают cos3·π.
В заключение этого пункта стоит заметить, что в разговоре про синус, косинус, тангенс и котангенс угла поворота часто опускают словосочетание «угол поворота» или слово «поворота». То есть, вместо фразы «синус угла поворота альфа» обычно используют фразу «синус угла альфа» или еще короче – «синус альфа». Это же касается и косинуса, и тангенса, и котангенса.
Такжесоответственно.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
dianochkazhikh30.01.2023 16:55
-
хорошувау312.11.2022 00:07
-
daryamelikhova13.10.2022 22:19
-
mixakov0512.05.2021 02:41
-
POOTISBIRD5016.05.2023 06:14
-
migmo514.07.2020 14:38
-
Leo20013.11.2021 02:31
-
Sanya33906.09.2020 03:36
-
Тжвик05.11.2020 13:55
-
bceznaika221.11.2021 01:24
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.