Ответы на вопрос:
ответ: x∈(1;2).
Пошаговое объяснение:
Прежде всего заметим, что так как x находится под знаком логарифма, то x>0. Умножим обе части на положительное число x^[log_2(x)] и положим x^[log_2(x)]=t. После этого неравенство примет вид t²+2<3*t, или t²-3*t+2<0. Перепишем его в виде (t-1)*(t-2)<0 и решим методом интервалов. Если t<1, то (t-1)*(t-2)>0; если 1<t<2, то (t-1)*(t-2)<0; если t>2, то (t-1)*(t-2)>0. Отсюда 1<t<2 и мы приходим к системе неравенств:
x^[log_2(x)]>1
x^[log_2(x)]<2
Решим первое неравенство. Для этого возьмём логарифмы по основанию 2 от обеих частей этого неравенства и получим неравенство [log_2(x)]²<log_2(1), или [log_2(x)]²>0. Отсюда log_2(x)>0 и x>1, т.е. при x∈(1;∞). Рассмотрим теперь второе неравенство. Возьмём логарифмы по основанию 2 от обеих частей это неравенства и получим неравенство [log_2(x)]²<log_2(2), или [log_2(x)]²<1. Это неравенство распадается на два таких:
log_2(x)<1
log_2(x)>-1.
Первое имеет решение x<2, т.е. x∈(-∞;2). Второе имеет решение x>1/2, т.е. x∈(1/2;∞). Но так как x>0, то отсюда следует, что x∈(0;2). Поэтому искомое решение таково: x∈(1;2).
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
Гаргульчик03.03.2022 08:14
-
1234565793429.03.2023 07:32
-
Baby200109.08.2022 20:26
-
mmila476409.11.2021 01:05
-
niloybasak010.06.2022 20:37
-
Lis666lis08.01.2020 04:47
-
nodiraxon199810.04.2023 05:34
-
EnemySSS23.10.2021 00:52
-
masterplay838oyfq9n10.06.2022 03:26
-
Lovedashuta10.03.2022 22:42
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.