Есть ответ 👍

Найти четвертый член бесконечной убывающей геометрической прогрессии, сумма которой равна 48, а первый член 24.​

273
335
Посмотреть ответы 2

Ответы на вопрос:

tolstuhen
4,5(63 оценок)

Пояснення:

До сих пор, говоря о суммах, мы всегда предполагали, что число слагаемых в этих суммах конечно (например, 2, 15, 1000 и т. д.). Но при решении некоторых задач (особенно высшей математики) приходится сталкиваться и с суммами бесконечного числа слагаемых

S = a1 + a2 + ... + an + ... . (1)

Что же представляют из себя такие суммы? По определению суммой бесконечного числа слагаемых a1, a2, ..., an, ... называется предел суммы Sn первых п чисел, когда п—> ∞:

S = Sn = (a1 + a2 + ... + an). (2)

Предел (2), конечно, может существовать, а может и не существовать. Соответственно этому говорят, что сумма (1) существует или не существует.

Как же выяснить, существует ли сумма (1) в каждом конкретном случае? Общее решение этого во выходит далеко за пределы нашей программы. Однако существует один важный частный случай, который нам предстоит сейчас рассмотреть. Речь будет идти о суммировании членов бесконечно убывающей геометрической прогрессии.

Пусть a1 , a1q , a1q2, ...— бесконечно убывающая геометрическая прогрессия. Это означает, что | q |< 1. Сумма первых п членов этой прогрессии равна

Из основных теорем о пределах переменных величин (см. § 136) получаем:

Но 1 = 1, a qn = 0. Поэтому

Итак, сумма бесконечно убывающей геометрической прогрессии равна первому члену этой прогрести, деленному на единицу минус знаменатель этой прогрессии.

Примеры.

1) Сумма геометрической прогрессии 1, 1/3 , 1/9 , 1/27 , ... равна

а сумма геометрической прогрессии 12; —6; 3; — 3/2, ... равна периодическую дробь 0,454545 ... обратить в обыкновенную.

Для решения этой задачи представим данную дробь в виде бесконечной суммы:

Правая часть этого равенства представляет собой сумму бесконечно убывающей геометрической прогрессии, первый член которой равен 45/100, а знаменатель 1/100. Поэтому

Описанным может быть получено и общее правило обращения периодических дробей в обыкновенные (см. гл. II, § 38):

Для обращения периодической дроби в обыкновенную нужно поступить следующим образом: в числителе поставить период десятичной дроби, а в знаменателе — число, состоящее из девяток, взятых столько раз, сколько знаков в периоде десятичной дроби.

3) Смешанную периодическую дробь 0,58333 .... обратить в обыкновенную.

Представим данную дробь в виде бесконечной суммы:

В правой части этого равенства все слагаемые, начиная с 3/1000, образуют бесконечно убывающую геометрическую прогрессию, первый член которой равен 3/1000, а знаменатель 1/10. Поэтому

Описанным может быть получено и общее правило обращения смешанных периодических дробей в обыкновенные (см. гл. II, § 38). Мы сознательно не приводим его здесь. Запоминать это громоздкое правило нет необходимости. Гораздо полезнее знать, что любую смешанную периодическую дробь можно представить в виде суммы бесконечно убывающей геометрической прогрессии и некоторого числа. А формулу

для суммы бесконечно убывающей геометрической прогрессии нужно, конечно, помнить.

В качестве упражнения предлагаем вам, помимо приведенных ниже задач № 995—1000, еще раз обратиться к задаче № 301 § 38 .

serikovvlad19
4,6(9 оценок)

y'=(x-1)'*(x+3)+(x-1)(x+3)'=x+3+x-1=2x+4

y'=5*3x^2-3*5x^4=15x^2-15x^4=15x^2(1-x^2)

y'=4*5x^4-4*4x^3=20x^4-16x^3=4x^3(5x-4)

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS