решить задания.
1. Найти полный дифференциал функции двух
переменных.
2. Исследовать функцию двух переменных на экстремум.
Ответы на вопрос:
ответ: 1) dz=e^(x/y)*dx/y-x*e^(x/y)*dy/y²; 2) функция имеет максимум в точке M(2/3; 1/3).
Пошаговое объяснение:
1) z=e^(x/y)
Находим частные производные:
dz/dx=1/y*e^(x/y), dz/dy=-x/y²*e^(x/y).
Полный дифференциал dz=dz/dx*dx+dz/dy*dy=e^(x/y)*dx/y-x*e^(x/y)*dy/y²
2) Находим первые частные производные:
dz/dx=2*y+2*x-2; dz/dy=2*x+8*y-4.
Приравнивая их к нулю, получаем систему уравнений:
x+y-1=0
x+4*y-2=0
Решая её, находим x=2/3, y=1/3 - координаты единственной критической точки М(2/3; 1/3).
Находим вторые частные производные:
d²z/dx²=2; d²z/dxdy=2; d²z/dy²=8. Так как они суть постоянные числа, то и в критической точке они будут иметь те же значения:
A=d²z/dx²(M)=2; B=d²z/dxdy(M)=2; C=d²z/dy²(M)=8.
Так как выражение A*C-B²=2*8-4=12>0, то есть положительно, то в точке М функция действительно имеет экстремум. А так как при этом A=2>0, то этот экстремум является максимумом.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
11UmNiK11116.11.2020 02:25
-
Lizakisa77706.04.2023 07:52
-
Flowers0918.08.2021 11:09
-
ryzhij11.06.2020 10:47
-
sashaorlov200618.04.2022 18:32
-
Тупойшкольник014.04.2021 08:29
-
lilaorazova200331.08.2022 03:04
-
Алая5кровь21.10.2020 02:08
-
katekurmakaeva17.11.2020 01:25
-
mazyrin91p08sby23.08.2021 10:52
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.