ya20032017
13.09.2022 04:16
Алгебра
Есть ответ 👍

с уравнением ! Я хочу спать , но пока не решу не пойду ! 10 класс алгебра

238
299
Посмотреть ответы 2

Ответы на вопрос:


Объяснение:

ОДЗ : cos2x ; sin2x

cosx ± 1/4 ; sinx ; cosx 0

x ± arccos0,25 + 2πk ; x πk/2 , k ∈ z

2*2cos^2 x - 2 = 1/2cos2x * ( ... )

2cos2x = 1/2cos2x * ( ... )

можно поделить на cos2x, так как cos2x также есть в знаменателе, то есть корни мы не теряем

2 = 1/2 * ( ... )

для удобства делаем замену: пусть 2x = t

2 = 1/2 * (/cost + 1/sint)

2 = /2cost + 1/2sint

(sint + cost) / 2costsint = 2

-2 (-/2 sint - 1/2 cost) / 2costsint = 2

-2 (-sin (π/3) sint - cos(π/3) cost) / 2costsint = 2

выносим минус за скобки и сокращаем 2

а также, используя формула приведения косинуса, только в обратную сторону, делаем все красиво

cos (π/3 - t) / costsint = 2

cos (π/3 - t) = 2costsint

cos (π/3 - t) - sin2t = 0

sin (π/2 - (π/3 - t) - sin2t = 0

sin (π/6 + t) - sin2t = 0

используем sin(t) - sin(s) = 2cos((t + s)/2) * sin ((t - s)/2)

и делим на 2

cos ((π + 18t)/12) * sin((π - 6t)/12) = 0

cos ((π + 18t)/12) = 0

sin ((π - 6t)/12) = 0

t = 5π/18 + 2πk/3

t = π/6 + 2πk

вспоминаем, что t = 2x

x = 5π/36 + πk/3

x = π/12 + πk

k ∈ Z

irochkaneznano
4,7(20 оценок)

1)вариант решения: условие   ymax  и ymin  ,если y¹=0; y=x²-2x-15; y¹=2x-2; ⇒ y¹=0; ⇒2x-2=0; ⇒x=1; y(1)=1²-2-15=-16; ⇒ymin=-16 2)вариант решения: y=x²-2x-15⇒уравнение параболы; коэффициент а> 0⇒ветви направлены вверх; координата вершины параболы-минимальное значение функции: xв=-b/2a=2/2=1; yв=1²-2-15=-16; ⇒ymin=-16.

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS