Плоскость a пересекает стороны ab и bc треугольника abc соответственно в точках m и n причём ac паралельна a и mn =6 см bm:ma=4:3.Найти АС
Ответы на вопрос:
ak = ab sin ß = b sin β bk = ab cos β = b cos β sabk = ak * bk / 2 = b2sin β cos β / 2
откуда sabс = 2sabk = b2sin β cos β (примем за искомую площадь основания, далее справочно к той же формуле, которая указана по ссылке выше)
если воспользоваться основными тригонометрическими тождествами, то b2sin β cos β = 1/2 b2sin 2β = 1/2 b2sin 2β или как по основной формуле (площади равнобедренного треугольника) 1/2 b2sin 2β = 1/2 b2sin (180 - α) = 1/2 b2sin α
теперь найдем площадь боковой поверхности пирамиды. сначала найдем высоту боковых граней, прилежащих к равным сторонам равнобедренного треугольника, лежащего в основании пирамиды. при этом учтем, что высота пирамиды проецируется в точку о основания, которая одновременно является центром вписанной окружности. вместе с радиусом вписанной окружности, высота боковой грани образует прямоугольный треугольник. откуда высота боковой грани пирамиды равна: h = r / sin φ
длину радиуса вписанной окружности найдем как r = s/p
учитывая, что bc = 2bk, то bc = 2b cos β откуда p = ( b + b + 2b cos β ) / 2 p = ( 2b + 2b cos β ) / 2 p = 2b ( 1 + cos β ) / 2 p = b ( 1 + cos β )
таким образом, радиус вписанной окружности в основание пирамиды будет равен r = s / p r = b2sin β cos β / b ( 1 + cos β ) = b sin β cos β / ( 1 + cos β )
теперь определим высоту боковых граней пирамиды. зная, что l / r = cos φ, то l = r cos φ
тогда площадь грани пирамиды, прилегающей к равным сторонам основания (а в основании пирамиды у нас лежит равнобедренный треугольник) будет равна: s1 = lb / 2 s1 = r cos φ * b / 2 s1 = b sin β cos β / ( 1 + cos β ) cos φ * b / 2 s1 = b2 sin β cos β / ( 1 + cos β ) cos φ / 2 s1 = b2 sin β cos β cos φ / ( 2 ( 1 + cos β ) )
площадь боковой грани, прилегающей к основанию, равна: s2 = bc * l / 2 s2 = 2b cos β * r cos φ / 2 s2 = b cos β * r cos φ s2 = b cos β * b sin β cos β / ( 1 + cos β ) * cos φ s2 = b2 cos2 β sin β cos φ / ( 1 + cos β )
площадь боковой поверхности пирамиды равна: sбок = 2s1 + s2 sбок = 2 * b2 sin β cos β / ( 2 ( 1 + cos β ) cos φ ) + b2 cos2 β sin β cos φ / ( 1 + cos β ) sбок = b2 sin β cos β cos φ / ( 1 + cos β ) + b2 cos2 β sin β cos φ / ( 1 + cos β ) sбок = ( b2 sin β cos β cos φ + b2 cos2 β sin β cos φ ) / ( 1 + cos β ) sбок = b2 sin β cos β cos φ ( 1 + cos β ) / ( 1 + cos β ) sбок = b2 sin β cos β cos φ
откуда площадь полной поверхности пирамиды с равнобедренным треугольником в основании составит: s = sбок + sосн s = b2 sin β cos β cos φ + b2 cos2 β sin β cos φ / ( 1 + cos β )
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
andreyderdi15917.07.2022 20:54
-
karina3651727.08.2022 10:47
-
Анастасия20181124.11.2022 21:40
-
Jack170328.11.2022 05:46
-
danilpus201624.03.2021 05:17
-
kirinjindosh1204.02.2021 21:02
-
lerosabi22.12.2021 22:55
-
lazmax200012.06.2022 11:52
-
Girjd05.01.2022 01:55
-
Кэйт77728.06.2022 07:42
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.