Ответы на вопрос:
d²y/dx²=2*dy/dx
Можно переписать:
y"=2y' - это линейное однородное ДУ второго порядка с постоянными коэффициентами.
y"-2y'=0 (1)
Составим и решим характеристическое уравнение:
р²-2p=0
p*(p-2)=0
p₁=0
p₂=2
Получены два различных действительных корня, поэтому общее решение имеет вид:
y=C₁*e^(p₁*x)+C₂*e^(p₂*x), где p₁ и p₂ - корни характеристического уравнения, C₁ и C₂ - константы.
y=C₁*e^(0*x)+C₂*e^(2*x)
y=C₁+C₂*e^(2*x) - общее решение (2).
Теперь нужно найти частное решение, соответствующее заданным начальным условиям. Наша задача состоит в том, чтобы найти такие значения констант С₁ и С₂, чтобы выполнялись оба условия.
Сначала используем начальное условие y(0)=3/2:
y(0)=C₁+C₂*e^(2*0)=C₁+C₂
Согласно начальному условию получаем первое уравнение:
C₁+C₂=3/2 (3)
Далее берем общее решение (2) и находим производную:
y'=(C₁+C₂*e^(2*x))'=0+2*C₂*e^(2*x)=2*C₂*e^(2*x)
Используем второе начальное условие y'(0)=1:
y'(0)=2*C₂*e^(2*0)=2*C₂
2*C₂=1
C₂=1/2 (4)
Теперь поддставим (4) в (3):
C₁+1/2=3/2
C₁=1 (5)
Остается подставить (4) и (5) в (2):
y=1+3/2*e^(2*x) - частное решение.
ответ: y=C₁+C₂*e^(2*x) - общее решение
y=1+3/2*e^(2*x) - частное решение
Подробнее - на -
Пошаговое объяснение:
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
dimus9920.04.2022 15:19
-
Amineshin14.02.2023 00:53
-
kzizh21.11.2021 22:08
-
Sabico23.03.2021 02:45
-
nomakade14.12.2021 12:42
-
tamerlana34ovwuq706.05.2023 01:14
-
никнэйм024.12.2022 09:36
-
alexnatur19.05.2021 06:26
-
kskkksjsjsj07.04.2020 16:33
-
valerango21.09.2022 00:07
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.