Есть ответ 👍

10 ,уже мозг болит решать ​(это уравнение)

293
472
Посмотреть ответы 2

Ответы на вопрос:


ответ:

это правильный ответ .


Дана функция y = (x^2 + 1)/(x^2 - 1).

1. Область определения функции - вся числовая ось: D(f) = R, x ≠ +-1.

Так как знаменатель дроби может обратиться в нуль при значениях x = 1 и х = -1, то из области определения функции эти 2 значения выпадают.

2. Функция f (x) = (x2 +1) /(x2-1) непрерывна на всей области определения кроме точек, в которых функция точно не определена (разрыв функции): x = 1 и х = -1.

Область значений функции приведена в пункте 8.

3. Точка пересечения графика функции с осью координат Оу:  

График пересекает ось Y, когда x равняется 0: подставляем x=0 в (x²+1) /(x²-1).

у = (0²+1)/(0²-1) = -1.

Результат: y = 0. Точка: (0; -1).

4. Точки пересечения графика функции с осью координат Ох:  

График функции пересекает ось Ох при y=0, значит, нам надо решить уравнение:  

(x²+1) /(x²-1) = 0.

Решаем это уравнение и его корни будут точками пересечения с Ох:

Для дроби достаточно приравнять нулю числитель:

x² +1  = 0,

x²  = -1.

Результат: нет решения. График не пересекает ось Ох.

5. Экстремумы функции:  

Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:  

y^'=(2x(x^2-1)-2x*(x^2+1))/(x^2-1)^2 =(2x^3-2x-2x^3-2x)/(x^2-1)^2 =-4x/((x^2  -1)^2  )

Решаем это уравнение и его корни будут экстремумами (достаточно нулю приравнять числитель): -4x = 0.

Результат: х=0. Точка: (0; -1).

6. Интервалы возрастания и убывания функции:  

С учётом двух точек разрыва функции и точки экстремума х = 0, имеем 4 интервала монотонности функции: (-∞; -1), (-1; 0), (0; 1) (1; +∞).

На промежутках находим знаки производной. Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.

x =   -2          -1 -0,5         0         0,5 1     2

y' = 0,889 - 3,556 0 -3,556 - -0,889

Минимума функции нет.

Максимум функции в точке  х = 0, у = -1.

Возрастает на промежутках: (-∞; -1) U (-1; 0).  

Убывает на промежутках: (0; 1) U (1; +∞).

7. Точки перегибов графика функции:  

Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции:  

y''=(4(3x² + 1))/(х² - 1)³ = 0.

Приравняем нулю числитель: 4(3x² + 1) = 0.

3x² + 1= 0.

3x² = - 1.

Это уравнение не имеет решения, поэтому у графика нет перегибов.  

8. Асимптоты.

Асимтоты бывают трех видов: вертикальные, горизонтальные и наклонные.

а) Вертикальные асимптоты – есть в точках разрыва. Это  линии х = -1 и х = 1.

б) Горизонтальная асимптота у графика функции определяется при нахождении предела функции на бесконечности:

lim┬(x→±∞)⁡〖(x^2+1 )/(x^2-1)=(x^2/x^2 +1/x^2 )/(x^2/x^2 -1/x^2 )=1/(1-0)=1.〗

Таким образом, горизонтальная асимптота : у = 1.

С учётом максимума функции в точке (0; -1) и предела значения функции у = 1 определяем область значений функции:

у Є (-∞;  -1] U (1; ∞).

в) наклонных асимптот нет. Функция f(x) имеет наклонную асимптоту y = k x + b тогда и только тогда, когда существуют конечные пределы k и в в уравнении у = kх + в.

〖 k=lim⁡〗┬(           x→±∞)⁡〖(f(x))/x.〗

〖b=lim⁡ 〗┬(         x→±∞)⁡〖[f(x)-kx].〗

Для данной функции первый из этих пределов равен нулю, поэтому наклонная линия не определяется (она совпадает с горизонтальной асимптотой).

9. Четность и нечетность функции:  

Проверим функцию -  четна или нечетна с соотношений f(-x) = f(x) и -f(x) = -f(x). Итак, проверяем:  

f(-x)=((-x)^2+1)/((-x)^2-1)=(x^2+1)/(x^2-1)=f(x).

3начит, функция является чётной.

10.  Таблица точек.

 x     y

-4.0 1.133

-3.5 1.178

-3.0 1.25

-2.5 1.381

-2.0 1.667

-1.5 2.6

-1.0 -

-0.5 -1.667

0 -1

0.5 -1.667

1.0 -

1.5 2.6

2.0 1.667

2.5 1.381

3.0 1.25

3.5 1.178

4.0 1.133

Подробнее - на -

Пошаговое объяснение:

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS