На упаковке сметаны жирностью 25% есть надпись «пищевая ценность 100 г продукта: белки — 2,5 г, жиры — 25 г, углеводы — 2,8 г».
определи энергетическую ценность (калорийность) 100 г сметаны жирностью 25% и вырази её в килоджоулях.
ответ:
ккал =
кдж.
Ответы на вопрос:
Поскольку внешних сил нет (мы пренебрегаем сопротивлением воды), то стало быть общий импульс системы этих трёх тел остаётся неизменным. Будем рассматирвать данную систему тел в модели из двух материальных точек m1 и m2, находящихся на концах тонкой спицы длины L и массой M, расположенной вдоль оси Ox, перпендикулярной g. Таким образом мы считаем, что все силы тяжести этих тел скомпенсированы силой реакции лодки, а так же и силой Архимеда, и далее вертикальные силы и импульсы нас интересовать не будут. Раскачивание лодки при перемещении рыбаков мы, также, в расчёт не принимаем.
Итак, как было сказано выше, импульс системы всегда равен нулю. Тоже верно и для проекции импульса по оси Ох:
pх = 0 ;
pх = MVx + m1 v1x + m2 v2x – в любой момент времени, где:
Vx = ΔХ/Δt – проекция (знаковая) скорости лодки на ось Ох, имеющей координату Х в любой момент времени ;
v1x = Δx1/Δt – проекция (знаковая) скорости перого рыбака массы m1 на ось Ох, имеющего координату x1 в любой момент времени ;
v2x = Δx2/Δt – проекция (знаковая) скорости второго рыбака массы m2 на ось Ох, имеющего координату x2 в любой момент времени ;
Δt > 0 – везде в вышеприведённых рассуждениях любой общий небольшой промежуток времени ;
pх = M (ΔХ/Δt) + m1 (Δx1/Δt) + m2 (Δx2/Δt) = 0 ; умножим всё на Δt и получим:
M ΔХ + m1 Δx1 + m2 Δx2 = 0 ; за любой небольшой промежуток времени, а значит и вообще за любой промежуток времени.
Далее за ΔХ, Δx1 и Δx2 – будем принимать смещения рыбаков относительно воды/земли за всё время «рокировки» рыбаков.
За всё время «рокировки» рыбаков, лодка относительно воды/земли сместится на ΔХ, а первый рыбак сместится на +L относительно лодки, а значит: отностельно воды/земли первый рыбак сместиться на величину:
ΔХ + L = Δx1 ;
За всё время «рокировки» рыбаков, лодка относительно воды/земли сместится на ΔХ, а второй рыбак сместится на –L относительно лодки, а значит: отностельно воды/земли второй рыбак сместиться на величину:
ΔХ – L = Δx2 ;
Подcтавим два предыдущих выражения для Δx1 и Δx2 в предыдущее уравнение и получим:
M ΔХ + m1 ( ΔХ + L ) + m2 ( ΔХ – L ) = 0 ;
M ΔХ + m1 ΔХ + m1 L + m2 ΔХ – m2 L = 0 ;
( M + m1 + m2 ) ΔХ = L ( m2 – m1 ) ;
откуда:
ΔХ = L (m2–m1)/(M+m1+m2) .
В частности, если рыбаки имеют одинаковую массу, то лодка не переместиться.
В частности, если первый левый рыбак имеет большую массу, то лодка переместиться налево.
А если первый левый рыбак имеет меньшую массу, то лодка переместиться направо.
Объяснение:
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Физика
-
Guttkov30.04.2022 17:46
-
Пеперони22812.03.2020 09:46
-
Romchik111111107.06.2022 03:26
-
baukovaevgehia203.01.2020 17:54
-
etyan0031.10.2020 13:05
-
egor57206.12.2022 05:29
-
Ryuuko09.02.2023 07:21
-
Расулев16.06.2021 21:59
-
Ксения20171111201.01.2023 14:46
-
JOKERLADGER19.06.2022 22:16
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.