Nekop34
11.01.2020 12:57
Алгебра
Есть ответ 👍

Составить уравнение касательной к графику функции y=e5x+1, которая параллельна прямой y=5x−8. в ответ записать абсциссу точки касания.

214
494
Посмотреть ответы 2

Ответы на вопрос:

жорж78
4,5(81 оценок)

производная функции y'=\left(e^{5x+1}\right)'=e^{5x+1}\cdot (5x+1)'=5e^{5x+1}

пусть x_0 - абсцисса точка касания. поскольку касательная параллельна прямой y = 5x-8 то у них угловые коэффициенты равны. следовательно, по смыслу производной

y'(x_0)=k\\ 5e^{5x_0+1}=5\\ \\ e^{5x_0+1}=1\\ \\ 5x_0+1=0\\ \\ x_0=-\dfrac{1}{5}

значение функции в точке x0 = -1/5

y(-1/5)=e^{5\cdot (-1/5)+1}=e^0=1

уравнение касательной:

f(x)=y'(x_0)(x-x_0)+y(x_0)=5(x-1/5)+1=5x

ответ: -1/5.

elyakomarova0
4,6(45 оценок)

8 без степеней

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS