Есть ответ 👍

3. доказать, что угол аов=90гр.
6. найти p(периметр)
9. найти все углы

294
317
Посмотреть ответы 2

Ответы на вопрос:


3.пусть угол вао = å, тогда угол dao тоже å

пусть угол аво = b, тогда угол сво тоже b

у параллелограмма сумма двух соседствующих углов = 180°

=> 2å + 2b = 180°, сократим вдвое:

å + b = 90° ( угол вао + угол аво )

тогда: в треугольнике аво угол аов = 180° - (угол вао + угол аво) = 180° - 90° = 90° что и требовалось доказать.

6.авсд - параллелограмм, тогда ав || сд, вс || ад. ав=сд вс=ад

угол авр = углу срв ( накрест лежащие углы при ав || сд, вр секущая )

тогда треугольник рвс - равнобедренный, тогда вс = ср = 4

ав=сд, сд = 4+1=5 тогда они равны 5

ад=вс, вс = 4, тогда они равны 4

периметр: 4 + 4 + 5 + 5 = 18см

9. треугольник акв - равнобедренный, тогда угол акв = углу авк = 50°, тогда угол а = 180° - (угол акв + угол авк) = 180° - 100° = 80°

две соседствующие углы в параллелограмме в сумме 180°,

тогда угол в = 180° - 80° = 100°.

противорасположные углы в параллелограмме равны, тогда угола = углус = 80°

уголв = углуд = 100°

ответы: 6)18см

9)угола = 80°

уголв = 100°

уголс = 80°

уголд = 100°

вроде так

elena444454
4,7(57 оценок)

периметр квадрата равен 16см тогда одна сторона равна 16/4=4см

значит r=v2/2*4=2v2 это радиус описнной окрудности

теперь вписанной

 

r=4/2=2

значит       длина   окружности   вписанной равна     l=2*pi*2=4pi

а описанной   равен         l=2pir   =2pi*2v2=4v2pi

где v- кв     корень!  

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS