На столе в ряд лежало несколько одинаковых монет,затем между каждыми двумя монетами положили по одной монете,затем опять между каждыми двумя монетами положили ещё по одной монете. в результате получилось 85 монет.сколько монет лежало сначала.
208
393
Ответы на вопрос:
Етоды решения тригонометрических уравнений . решение тригонометрического уравнения состоит из двух этапов : преобразование уравнения для получения его простейшего вида ( см. выше ) и решение полученного простейшего тригонометрического уравнения . существует семь основных методов решения тригонометрических уравнений . 1. метод. этот метод нам хорошо известен из ( метод замены переменной и подстановки ). 2. разложение на множители. этот метод рассмотрим на примерах . п р и м е р 1. решить уравнение: sin x + cos x = 1 . р е ш е н и е . перенесём все члены уравнения влево : sin x + cos x – 1 = 0 , преобразуем и разложим на множители выражение в левой части уравнения : п р и м е р 2. решить уравнение: cos 2 x + sin x · cos x = 1. р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 , sin x · cos x – sin 2 x = 0 , sin x · ( cos x – sin x ) = 0 , п р и м е р 3. решить уравнение: cos 2x – cos 8x + cos 6x = 1. р е ш е н и е . cos 2x + cos 6x = 1 + cos 8x , 2 cos 4x cos 2x = 2 cos ² 4x , cos 4x · ( cos 2x – cos 4x ) = 0 , cos 4x · 2 sin 3x · sin x = 0 , 1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 , 3. к однородному уравнению . уравнение называется однородным относительно sin и cos, если все его члены одной и той же степени относительно sin и cos одного и того же угла. чтобы решить однородное уравнение , надо: а) перенести все его члены в левую часть ; б) вынести все общие множители за скобки ; в) приравнять все множители и скобки нулю ; г) скобки, приравненные нулю , однородное уравнение меньшей степени, которое следует разделить на cos ( или sin ) в старшей степени; д) решить полученное уравнение относительно tan . п р и м е р . решить уравнение: 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2. р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x , sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 , tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 , корни этого уравнения : y1 = -1, y2 = -3, отсюда 1) tan x = –1, 2) tan x = –3, 4. переход к половинному углу . рассмотрим этот метод на примере : п р и м е р . решить уравнение: 3 sin x – 5 cos x = 7. р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) = = 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) , 2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 , tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 , .5. введение угла . рассмотрим уравнение вида: a sin x + b cos x = c , где a, b, c – коэффициенты; x – неизвестное. теперь коэффициенты уравнения свойствами синуса и косинуса, а именно: модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . тогда можно обозначить их соответственно как cos и sin ( здесь - так называемый угол ), и наше уравнение принимает вид: 6. преобразование произведения в сумму . здесь используются соответствующие формулы. п р и м е р . решить уравнение: 2 sin x · sin 3x = cos 4x. р е ш е н и е . преобразуем левую часть в сумму : cos 4x – cos 8x = cos 4x , cos 8x = 0 , 8x = p / 2 + pk , x = p / 16 + pk / 8 . 7. универсальная подстановка. рассмотрим этот метод на примере . п р и м е р . решить уравнение: 3 sin x – 4 cos x = 3 . таким образом, решение даёт только первый случай.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
liza833211.03.2023 03:32
-
sukalovan023.01.2020 08:13
-
popkaf11.04.2021 19:32
-
Masha7698755g30.04.2023 18:24
-
Aleksey456925.09.2021 18:34
-
REDFRAG01.09.2021 09:51
-
ТЕМА323230.01.2020 04:30
-
udovilyudmila27.09.2021 12:10
-
natsvin201716.04.2020 13:44
-
tolikstrikashi29.04.2023 05:43
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.