Есть ответ 👍

Найти \lim_{n \to \infty} (\frac{1}{a1a2} + \frac{1}{a2a3} +  + \frac{1}{a_{n}a_{n+1} }) ,
где {a_{k}} - арифметическая прогрессия, все члены и разность d которой отличны от нуля.

229
406
Посмотреть ответы 2

Ответы на вопрос:

hopelless2124
4,7(9 оценок)

распишем сначала сумму для удобства и потом подсчитаем предел

\dfrac{1}{a_1a_2}+\dfrac{1}{a_2a_3}++\dfrac{1}{a_na_{n+1}}=\dfrac{1}{d}\left(\dfrac{d}{a_1a_2}+\dfrac{d}{a_2a_3}++\dfrac{d}{a_na_{n+1}}\right)=\\ \\ \\= \dfrac{1}{d}\left(\dfrac{d}{a_1(a_1+d)}+\dfrac{d}{(a_1+d)(a_1+2d)}++\dfrac{d}{(a_1+(n-1)d)(a_1+nd)}\right)=\\ \\ \\ =\dfrac{1}{d}\bigg(\dfrac{a_1+d-a_1}{a_1(a_1+d)}+\dfrac{a_1+2d-(a_1+d)}{(a_1+d)(a_1+2d)}++\dfrac{a_1+nd-(a_1+(n-1)d)}{(a_1+(n-1)d)(a_1+nd)}\bigg)=

=\dfrac{1}{d}\bigg(\dfrac{1}{a_1}-\dfrac{1}{a_1+d}+\dfrac{1}{a_1+d}-\dfrac{1}{a_1+2d}++\dfrac{1}{a_1+(n-1)d}-\dfrac{1}{a_1+nd}\bigg)=\\ \\ \\ =\dfrac{1}{d}\cdot \left(\dfrac{1}{a_1}-\dfrac{1}{a_1+nd}\right)

переходя к пределу при   n\to \infty мы получим

\displaystyle \lim_{n \to \infty}\dfrac{1}{d}\left(\dfrac{1}{a_1}-\dfrac{1}{a_1+nd}\right)=\dfrac{1}{a_1d}

ответ: \displaystyle \lim_{n \to \infty}\left(\dfrac{1}{a_1a_2}+\dfrac{1}{a_2a_3}++\dfrac{1}{a_na_{n+1}}\right)=\dfrac{1}{a_1d}

ПакЧимин111
4,4(22 оценок)

ответ:  -4

Объяснение:

m²-4 m+4-4=(m²-4 m+4)-4=(m-2)²-4 наименьшее значение -4 ордината параболы, ветви которой направлены вверх, даже и без нее понятно, что квадрат скобки принимает наименьшее значение. равное нулю. да еще минус 4

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS