Научите меня, как подбирать числа в линейной функции, вроде хорошо учусь, 4 и 5, а в этом не шарю, сейчас от того как вы мне объясните зависит моя оценка в четверти, висит 4 или 3, у меня ни разу не было 3, а мне нужна !
162
449
Ответы на вопрос:
Линейной функцией называется функция вида y = kx + b, заданная на множестве всех действительных чисел. здесь k – угловой коэффициент (действительное число), b – свободный член (действительное число), x – независимая переменная.в частном случае, если k = 0, получим постоянную функцию y = b, график которой есть прямая, параллельная оси ox, проходящая через точку с координатами (0; b).если b = 0, то получим функцию y = kx, которая является прямой пропорциональностью. смысл коэффициента b – длина отрезка, который отсекает прямая по оси oy, считая от начала координат. смысл коэффициента k – угол наклона прямой к положительному направлению оси ox, считается против часовой стрелки.свойства линейной функции: 1) область определения линейной функции есть вся вещественная ось; 2) если k ≠ 0, то область значений линейной функции есть вся вещественная ось. если k = 0, то область значений линейной функции состоит из числа b; 3) четность и нечетность линейной функции зависят от значений коэффициентов k и b.a) b ≠ 0, k = 0, следовательно, y = b – четная; b) b = 0, k ≠ 0, следовательно y = kx – нечетная; c) b ≠ 0, k ≠ 0, следовательно y = kx + b – функция общего вида; d) b = 0, k = 0, следовательно y = 0 – как четная, так и нечетная функция.4) свойством периодичности линейная функция не обладает; 5) точки пересечения с осями координат: ox: y = kx + b = 0, x = -b/k, следовательно (-b/k; 0) – точка пересечения с осью абсцисс.oy: y = 0k + b = b, следовательно (0; b) – точка пересечения с осью ординат.замечание.если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х. если b ≠ 0 и k = 0, то функция y = b не обращается в ноль ни при каких значениях переменной х .6) промежутки знакопостоянства зависят от коэффициента k.a) k > 0; kx + b > 0, kx > -b, x > -b/k.y = kx + b – положительна при x из (-b/k; +∞),y = kx + b – отрицательна при x из (-∞; -b/k).b) k < 0; kx + b < 0, kx < -b, x < -b/k.y = kx + b – положительна при x из (-∞; -b/k),y = kx + b – отрицательна при x из (-b/k; +∞).c) k = 0, b > 0; y = kx + b положительна на всей области определения,k = 0, b < 0; y = kx + b отрицательна на всей области определения.7) промежутки монотонности линейной функции зависят от коэффициента k.k > 0, следовательно y = kx + b возрастает на всей области определения,k < 0, следовательно y = kx + b убывает на всей области определения.8) графиком линейной функции является прямая. для построения прямой достаточно знать две точки. положение прямой на координатной плоскости зависит от значений коэффициентов k и b. ниже таблица, которая наглядно это иллюстрирует рисунок 1.(рис.1)пример.рассмотрим следующую линейную функцию: y = 5x – 3.1) d(y) = r; 2) e(y) = r; 3) функция общего вида; 4) непериодическая; 5) точки пересечения с осями координат: ox: 5x – 3 = 0, x = 3/5, следовательно (3/5; 0) – точка пересечения с осью абсцисс.oy: y = -3, следовательно (0; -3) – точка пересечения с осью ординат; 6) y = 5x – 3 – положительна при x из (3/5; +∞),y = 5x – 3 – отрицательна при x из (-∞; 3/5); 7) y = 5x – 3 возрастает на всей области определения; 8)
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
Anastasia1357708.06.2023 15:03
-
22866512316.04.2021 02:48
-
Pro100egor4ik200022.09.2021 02:17
-
missmarial201005.02.2022 12:44
-
GlendaRei04.05.2022 22:55
-
Мальцев2322.02.2022 09:56
-
Викуляшка11.06.2022 15:52
-
333unicorn33314.12.2022 20:33
-
Zhuravl22008.08.2020 04:01
-
ksenchhh22.08.2022 01:18
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.