veon1
24.11.2022 16:42
Математика
Есть ответ 👍

Решите уравнение 8sin^2x-2 корень из 3cos(п/2-x)-9=0 на промежутке -5п/2; -п входящие

219
473
Посмотреть ответы 1

Ответы на вопрос:


Теорема две прямые, параллельные третьей, параллельны. доказательство. пусть прямые a и b параллельны прямой с. допустим, что прямые a и b не параллельны. тогда они пересекаются в некоторой точке с. получается, что через точку с проходит две прямые параллельные прямой с. но это противоречит аксиоме «через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной» . теорема доказана. теорема если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны. доказательство. пусть есть параллельные прямые a и b, которые пересекаются секущей прямой с. прямая с пересекает прямую а в точке a и прямую b в точке b. проведем чрез точку a прямую a1 так, что бы прямые a1 и b с секущей с образовали равные внутренние накрест лежащие углы. по признаку параллельности прямых прямые a1 и b параллельны. а так как через точку a можно провести только одну прямую параллельную b, то a и a1 . значит, внутренние накрест лежащие углы, образованные прямой a и b, равны. теорема доказана. на основании теоремы доказывается: если две параллельные прямые пересечены третьей прямой, то соответствующие углы равны. если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180 º

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS