1. теория государства и права как общественная юридическая наука. как ответить на этот !
Ответы на вопрос:
ответ: Относительные отверстия N1 =1 : 16; N2 = 1 : 8.
Разрешение α''1 = 0,37(3)''; α''2 = 0,14''.
Наибольшее увеличение (по Максутову) Гmax1 = 525х; Гmax2 = 1400х.
Наименьшие увеличения Гmin1 = 56,25х; Гmin2 = 150х.
Объяснение: Относительное отверстие (N) объектива это параметр объектива равный отношению светового диаметра объектива к его фокусному расстоянию. Относительное отверстие выражают в виде дроби с единицей в числителе, за которую принят световой диаметр. Таким образом, относительное отверстие первого объектива N1 = 37,5см/600см = 1/16.
Относительное отверстие второго объектива N2 = 1м/8м =1/8.
Относительные отверстия принято записывать в несколько ином виде:
1/16 = 1:16, 1/8 = 1:8
Разрешение (α'') объектива находят по формуле 140''/Dмм, здесь Dмм - световой диаметр объектива в миллиметрах.
Разрешение первого объектива α''1 = 140''/375 = 0,37(3)''
Разрешение второго объектива α''2 = 140''/1000 = 0,14''
Наименьшее полезное увеличение (Гmin) найдем по формуле:
Гmin = D/d, здесь D - световой диаметр объектива (апертура объектива); d - диаметр зрачка глаза в темноте.
Диаметр зрачка глаза в темноте у разных наблюдателей разный, от 6 до 8 миллиметров, но можно принять некоторое среднее значение dср = 6,(6) мм, тогда наименьшее полезное увеличение найдем по формуле: Гmin = 0,15*Dмм. Тогда
Наименьшее увеличение первого объектива Гmin1 = 0,15*375 = 56,25 х (крат).
Наименьшее увеличение второго объектива Гmin2 = 0,15*1000 = 150 х (крат)
О наибольшем увеличении (Гmax) имеются разные мнения. В свое время советский оптик Максутов Д.Д., искавший ответ на этот вопрос, пришел к выводу, что максимальным полезным увеличением будет увеличение равное 1,4*Dмм. (диаметр объектива принимается в миллиметрах). При таком увеличении яркость изображения лишь в два раза меньше яркости изображения при наименьшем увеличении, что позволяет надежно видеть слабоконтрастные детали изображения при наблюдении, например, планет.
Современные любители астрономии в качестве максимальных увеличений принимают увеличения равные 2Dмм. При таких увеличениях контраст изображения заметно снижается, потому, что яркость изображения в 4 раза меньше яркости изображения при наименьшем увеличении. Тем не менее, это не мешает наблюдать звезды и Луну.
Но, иногда, при изучении астроклимата, профессиональные астрономы применяют очень большие увеличения, до 5Dмм. Такие увеличения позволяют детально рассмотреть дифракционную картину звезды, и сделать вывод о качестве изображения, которое зависит от состояния атмосферы.
Таким образом, величина наибольшего увеличения зависит от того типа задач, которые в момент наблюдения решает наблюдатель. Примем в качестве основной формулы формулу Максутова. Тогда наибольшее увеличение для первого объектива Гmax1 = 1,4Dмм = 1,4 *375 = 525 х.
Наибольшее увеличение для второго объектива Гmax2 = 1,4*1000 = 1400 х
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Другие предметы
-
мууур128.08.2020 17:35
-
Андріана132311.03.2021 04:42
-
igor1337d10.08.2021 01:12
-
ПоляБондарь05.01.2020 14:19
-
Lera680710.08.2020 02:52
-
SonyEricsson12.10.2021 16:12
-
Zenya111129.08.2020 11:15
-
vikavikt03.01.2022 07:14
-
125654554424.08.2020 06:55
-
Asja2124.01.2020 13:44
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.