Ответы на вопрос:
функция существует, когда знаменатель дроби не обращается в 0
область определения функции: [tex]d(y)=(-\infty; 0)\cup(0; 3)\cup(3; +/tex]
аргументы x=0 и x=3 не принадлежат области определения функции
6 превратить в произведение
cos9x – cos13x – sin2x = ( cos9x – cos13x ) – sin2x =
= - 2*sin [(9x+13x)/2]* sin [(9x-13x)/2] - sin2x =
= -2*sin11x *sin(-2x) - sin2x = 2*sin11x * -sin(-2x) - sin2x = **-sin(-2x)=sin2x
= 2*sin11x * sin2x - sin2x = sin2x * (2*sin11x - 1)
7 сократите
(cos9a +cos7a ) / (cos6a*cos2a – sin6a*sin2a)
преобразуем по частям
числитель - переход от суммы к произведению
cos9a +cos7a = 2*cos[(9a+7a)/2 ]* cos[(9a-7a)/2 ]=2*cos8a*cosa (1)
знаменатель - формула сложения
cos6a*cos2a – sin6a*sin2a=cos (6a +2a) =cos 8a (2)
подставим части в дробь
(1) / (2) = 2*cos8a*cosa / cos 8a = 2 cos a
8 доказать тождество
2/ (1-sin2a) =1+ctg2 (a –п/4)
преобразуем по частям
левая часть
2/ (1-sin2a) = 2/ (1-2sinα*cosα)= 2/ (sin2α +cos2α -2sinα*cosα)=2/( sinα-cosα)2
правая часть
1+ctg2 (a –п/4)=1/sin2(a-п/4)=1/(sina*cos п/4 –sin п/4*cosa)2=
=1/ (sina * 2/√2 - 2/√2 *cosa)2 =1/ (4/2 *( sinα-cosα)2) =2/( sinα-cosα)2
2/( sinα-cosα)2 =2/( sinα-cosα)2
в обеих частях одно и то же выражение
доказано
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
ruzvelt300029.05.2020 12:57
-
zhaniyaadilshi02.03.2023 13:08
-
Рафаэлла200402.06.2023 03:32
-
ressko12319.05.2021 07:11
-
YakovlevaJulia200422.05.2022 00:58
-
alinatrocenko17.02.2023 02:29
-
ress113304.01.2022 14:01
-
JHopeЧонХосочек03.02.2020 04:13
-
Sanya311017.10.2021 06:58
-
bigofficerjor07.10.2020 16:03
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.