Есть ответ 👍

Хелпаните с ! сразу 70б за такое (хотя это изи, просто нет времени) , срубите . 1. многоугольник: определение, чертеж, основные элементы. 2. выпуклый многоугольник. 3. четырехугольник. 4. параллелограмм: определение, чертеж, свойства. 5. признаки параллелограмма. 6. свойства биссектрис углов параллелограмма. 7. свойства высот параллелограмма. 8. трапеция: определение, чертеж, свойства. 9. равнобедренная трапеция и ее свойства. 10. прямоугольник: определение, чертеж, свойства. признаки прямоугольника 11. ромб: определение, чертеж, свойства. признаки ромба. 12. квадрат: определение, чертеж, свойства. признаки квадрата. 13. теорема фалеса. расширенная теорема фалеса.(на примерах) 14. понятие площади. основные свойства площадей. 15. площади квадрата, прямоугольника: чертеж, запись формулы. 16. площади параллелограмма, трапеции, ромба: чертеж, свойства. 17. площади треугольника чертеж, запись формул. 18. теорема об отношении площадей треугольников, имеющих по равному углу. 19. терема об отношении площадей треугольников имеющих равные высоты или равные стороны. 20. прямоугольный треугольник определение и чертеж. свойства прямоугольного треугольника с углом в 30градусов и 45 градусов. 21. формулы площади прямоугольных треугольников 22. свойство медианы в прямоугольном треугольнике. 23. соотношения в прямоугольном треугольнике. 24. теорема пифагора. теорема, обратная теореме пифагора. 25. определение вида треугольника. 26. определение подобных треугольников. чертеж. признаки подобия треугольников. 27. теорема об отношении площадей и периметров подобных треугольников. 28. определение биссектрисы треугольника. свойство биссектрис треугольника. 29. теорема о делении биссектрисой противоположной стороны треугольника. 30. средняя линия треугольника. теорема о средней линии треугольника. 31. определение медианы треугольника и ее свойства. 32. синус, косинус, тангенс и котангенс острого угла прямоугольного треугольника. 33. основное тригонометрическое тождество. основные формулы. 34. касательная к окружности. теорема о свойстве касательной к окружности. 35. отрезки касательных, проведенных из одной точки. свойство отрезков касательных. 36. дуга. полуокружность. градусная мера дуги окружности. 37. центральный угол, вписанный угол: определение, чертеж. 38. свойство центрального и вписанного угла, опирающегося на одну дугу. 39. угол между хордой о касательной. угол с вершиной внутри окружности. угол с вершиной вне окружности 40. теорема о вписанном угле. следствия из теоремы о вписанном угле. 41. теорема об отрезках пересекающихся хорд. 42. серединный перпендикуляр. свойство серединного перпендикуляра. 43. вписанная окружность. теорема о центре вписанной окружности. 44. свойство четырехугольника, в который можно вписать окружность. 45. описанная окружность. теорема о центре описанной окружности. 46. свойство четырехугольника, около которого можно описать окружность.

130
230
Посмотреть ответы 1

Ответы на вопрос:

Nikiton101
4,4(14 оценок)

диаметр можно найти по формуле: d = 2r, где диаметр равен удвоенному радиусу окружности.

радиус - расстояние от центра до любой точки окружности. обозначается латинской r.

если известен радиус окружности, допустим, он равен 8 см, то значит d = 2 * 8 = 16 см.

вторая формула, по которой можно найти диаметр окружности, выглядит так: d = длину окружности поделить на пи.

число пи применяется в для обозначения определённого иррационального числа, и равно приблизительно 3,14.

если известна длина окружности, допустим, 18 см, то значит d = 18 : 3,14 = 5,73 см

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS