Доведіть, що бісектриси кутів при основі рівнобедреного трикутника рівні!
Ответы на вопрос:
)
\vec{AB}-\vec{DC}+\vec{BC} =\vec{AB}+\vec{BC}+\vec{CD} =\vec{AD}AB−DC+BC=AB+BC+CD=AD
Воспользовались переместительным законом, также тем, что \vec{XY}=-\vec{YX}XY=−YX и правилом многоугольника: \vec{XX_1}+\vec{X_1X_2}+...+\vec{X_{n-1}X_n} =\vec{XX_n}XX1+X1X2+...+Xn−1Xn=XXn
2)
\begin{gathered}\vec{AD}-\vec{BA}+\vec{DB}+\vec{DC}=\vec{AD}+\vec{DB}-\vec{BA}+\vec{DC} ==\vec{AB}+\vec{AB}+\vec{DC} =2\vec{AB}+\vec{AB}=3\vec{AB}\end{gathered}AD−BA+DB+DC=AD+DB−BA+DC==AB+AB+DC=2AB+AB=3AB
Использовали те же факты, что в первом пункте и не только. Так, например \vec{AB}=\vec{DC}AB=DC поскольку AB║DC, как противоположные стороны параллелограмма, по тем же соображениям AB=DC и векторы направлены в одну сторону (т. A и т. D лежат в одной полуплоскости от BC).
3)
\begin{gathered}\vec{AB}+\vec{CA}-\vec{DA}=\vec{DC}+\vec{CA}+\vec{AD}==\vec{AD}+\vec{DC}+\vec{CA}=\vec{AA} =0\end{gathered}AB+CA−DA=DC+CA+AD==AD+DC+CA=AA=0
Использовали всё то, что было во втором пункте (например \vec{AB}=\vec{DC}AB=DC ) и ещё определение нулевого вектора: вектор начало и конец которого в одной точке.
ответы:
1)\vec{AD};\; 2)\,3\vec{AB};\; 3)\,0.1)AD;2)3AB;3)0.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
лина211030.12.2020 10:41
-
marusya1110234513.03.2022 09:32
-
christihhh7520.01.2020 22:22
-
444m09.03.2020 11:20
-
Maika0125.06.2020 09:47
-
kristinamoroz119.07.2022 13:01
-
герман12334444423.04.2020 00:08
-
megaandreychuk21.04.2021 06:22
-
Flispide08.11.2020 12:59
-
gukalovaekateri21.06.2020 14:49
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.