Есть ответ 👍

Вравнобедренном треугольнике abc с основанием ас проведена его биссектриса ad, угол adc равен 105 градусов. найдите углы авс

160
399
Посмотреть ответы 1

Ответы на вопрос:

kulisenok
4,6(40 оценок)

1.

AC = 8,5 - 4,6 = 3,9 см.

AB - весь отрезок.

AC - часть отрезка.

BC - часть отрезка.

2.

угол CBD = углу ABC = 25°

угол ABD = CBD + ABC = 25° + 25° = 50°

3.

второй угол = 180° - первый угол = 180° - 114° = 66°

4.

P треугольника = 6 + 6 + 4 = 16 см.

5.

1) Рассмотрим треугольник АВС

По теореме о сумме углов треугольника найдем угол В.

Угол В = 180° - угол А - угол С = 180° - 80° - 40° = 60°

2) Угол ВМK = углу А (соответственные при МК || АС и секущей АВ)

Угол ВМK = 80°

3) Угол ВМN = углу MKN (т.к. MN  - биссектриса угла ВМК)

Угол ВМN = углу MKN = 80° : 2 = 40°

4) Рассмотрим треугольник ВМN

По теореме о сумме углов треугольника найдем угол МNВ.

Угол MNB = 180° - угол В - угол ВМN = 180° - 60° - 40° = 80°

5) Сумма углов MNB и MNK равна 180°, т.к. они смешные.

Отсюда угол MNK = 180° - угол MNB = 180° - 80° = 100°

ответ: угол MNK = 100°

6.

Угол ДАС = углу ЕСА ( углы при основании ровнобедреного тркугольника АВС )

Угол ЕАС = углу ДСА ( Угол ДАС = углу ЕСА, а АЕ и СД - биссектрисы этих углов )

АС - общая сторона - из всего выше изложеного делаем вывод что треугольник АДС = треугольнику СЕА ( по стороне и двум прилегающим к ней углам )

7.

Внешний угол треугольника равен сумме внутренних углов, не смежных с ним.

Пусть угол С=2х°, угол КАВ=5х°, угол В=90°,  тогда 2х+90=5х

3х=90;  х=30

угол С=30:2=60°;  угол А=90-60=30°, т.к. сумма острых углов прямоугольного треугольника составляет 90°

Катет ВС лежит против угла 30°, следовательно, он равен половине гипотенузы АС

АС=2ВС=12 см.

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS