Есть ответ 👍

Дана матрица a= 6 6 6 −6 −4 −1 6 4 1. выясните, какое из чисел λ=0 или λ=−8 является собственным числом матрицы а. найдите собственный вектор, отвечающий этому собственному числу. собственный вектор запишите в виде −3; p; q в ответ введите числа p и q, разделив их точкой с запятой.

176
253
Посмотреть ответы 2

Ответы на вопрос:


ответ:

собственные числа находят из характеристического уравнения:

|a-λe|=0

\begin{vmatrix} \begin{pmatrix}6& 6& 6\\-6& -4 & -1\\ 6& 4& 1\end{pmatrix} -\lambda \begin{pmatrix} 1& 0& 0\\0& 1 & 0 \\0& 0 & 1 \end{pmatrix}\end{vmatrix}=0 \\ \\ \\ \begin{vmatrix}6-\lambda & 6 & 6 \\ -6& -4-\lambda &  -1\\ 6&  4 & 1-\lambda\end{vmatrix}=0

проверяем будет ли -8 являться собственным числом данной матрицы:

1) \lambda=-8 \\ \\ \begin{vmatrix}6+8 & 6 & 6 \\ -6& -4+8 &  -1\\ 6& 4 & 1+8\end{vmatrix}=\begin{vmatrix}14 & 6 & 6 \\-6& 4& -1\\6&  4 & 9\end{vmatrix}=14*4*9-6*4*6-6*1*6- \\ \\ -(6*4*6-6*6*9-14*4*1)=324+236=560\neq 0

определитель не равен нулю, следовательно -8 не является собственным числом матрицы а

проверяем число 0

2)\lambda=0\\ \\ \begin{vmatrix}6-\lambda & 6 & 6 \\-6& -4-\lambda &  -1\\6& 4& 1-\lambda \end{vmatrix}=\begin{vmatrix}6& 6& 6\\-6& -4& -1\\6& 4& 1 \end{vmatrix}=0

(вторая строка определителя пропорционально третьей строке, поэтому этот определитель равен нулю)

значит λ=0 - собственное число матрицы а

теперь находим собственный вектор из матричного уравнения:

\begin{pmatrix}6-\lambda & 6 & 6 \\ -6& -4-\lambda&  -1\\ 6&  4 & 1-\lambda\end{pmatrix}*\begin{pmatrix} x\\ y\\z \end{pmatrix}=\begin{pmatrix} 0\\0 \\0 \end{pmatrix} \\ \\ \\ \begin{pmatrix}6 & 6  & 6 \\ -6& -4 &  -1\\ 6&  4 & 1\end{pmatrix}*\begin{pmatrix} x\\ y\\z \end{pmatrix}=\begin{pmatrix} 0\\0 \\0 \end{pmatrix} \\ \\ \\

\left\{\begin{matrix} 6x+6y+6z=0 \ |: 6\\ -6x-4y-z=0\\6x+4x+z=0 \ |*(-1)\end{matrix}\right. < =>  \left\{\begin{matrix}x+y+z=0 \ \\ -6x-4y-z=0\\-6x-4x-z=0\end{matrix}\right. < =>  \ \ \\ \\ \\ < =>  \ \ \left\{\begin{matrix}x+y+z=0 \ \\ -6x-4y-z=0\end{matrix}\right. < =>  \left\{\begin{matrix}y+z=-x \ \\ 6(y+z)-4y-z=0\end{matrix}\right. < =>  \\ \\ < => \left\{\begin{matrix}y+z=-x \ \\ 6y+6z-4y-z=0\end{matrix}\right. < =>  \left\{\begin{matrix}y+z=-x \ \\2y=-5z\end{matrix}\right. < =>

\left\{\begin{matrix}y+z=-x \ \\2y=-5z\end{matrix}\right. < =>  \left\{\begin{matrix}-2.5z+z=-x \ \\y=-2,5z\end{matrix}\right. < =>  \left\{\begin{matrix}x=1.5z\ \\y=-2.5z\end{matrix}\right.

собственный вектор будет иметь координаты:

\vec{u}=(1.5z; -2.5z; z)

пусть z=-2, тогда

\vec{u}=(-3; 5; -2)

ответ: 5; -2

Cole21
4,4(45 оценок)

Х- в левом 3х-20=х 3х+х=20 4х=20 х=5 5 - в левом 5*3=15 - в правом

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS