Есть ответ 👍

(a^3)^3/a^8*a^-3 выражение с решением

149
209
Посмотреть ответы 1

Ответы на вопрос:

Romakot
4,6(71 оценок)

Корень {\displaystyle n}-й степени из числа {\displaystyle a} определяется[1] как такое число {\displaystyle b}, что {\displaystyle b^{n}=a.} Здесь {\displaystyle n} — натуральное число, называемое показателем корня (или степенью корня); как правило, оно больше или равно 2, потому что случай {\displaystyle n=1} не представляет интереса.

Обозначение: {\displaystyle b={\sqrt[{n}]{a}},} символ (знак корня) в правой части называется радикалом. Число {\displaystyle a} (подкоренное выражение) чаще всего вещественное или комплексное, но существуют и обобщения для других математических объектов, например, вычетов, матриц и операторов, см. ниже #Вариации и обобщения.

Примеры для вещественных чисел:

Корнями 2-й степени из числа 9 являются {\displaystyle +3} и {\displaystyle -3,} у обоих этих чисел квадраты совпадают и равны 9

{\displaystyle {\sqrt[{3}]{\ 64}}=4,} потому что {\displaystyle 4^{3}=64.}

{\displaystyle {\sqrt[{3}]{\frac {8}{27}}}={\frac {2}{3}},} потому что {\displaystyle \left({\frac {2}{3}}\right)^{3}={\frac {8}{27}}.}

Как видно из первого примера, у вещественного корня чётной степени могут быть два значения (положительное и отрицательное), и это затрудняет работу с такими корнями, не позволяя использовать их в арифметических вычислениях. Чтобы обеспечить однозначность, вводится понятие арифметического корня[⇨] (из неотрицательного вещественного числа), значение которого всегда неотрицательно, в первом примере это число {\displaystyle 3.} Кроме того, принято соглашение, по которому знак корня чётной степени из вещественного числа всегда обозначает арифметический корень[2][3]: {\displaystyle {\sqrt[{2}]{9}}=3.} Если требуется учесть двузначность корня, перед радикалом ставится знак плюс-минус[2]; например, так делается в формуле решения квадратного уравнения {\displaystyle ax^{2}+bx+c=0}:

{\displaystyle x_{1,2}={\frac {-b\pm {\sqrt {b^{2}-4ac}}}{2a}}}

Вещественные корни чётной степени из отрицательных чисел не существуют. Из комплексного числа всегда можно извлечь корень любой степени, но результат определён неоднозначно — комплексный корень {\displaystyle n}-й степени из ненулевого числа имеет {\displaystyle n} различных значений (см. #Корни из комплексных чисел).

Операция извлечения корня и алгоритмы её реализации появились в глубокой древности в связи с практическими потребностями геометрии и астрономии, см. #История.

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS