100 ! изменить порядок интегрирования в двойных интегралах 1. интеграл от 0 до 1 по dx интеграл от 0 до корень(2х-х^2) f(x,y) по dx 2. интеграл от 0 до 1 по dy интеграл от минус корень(1-у^2) до 1-у f(x,y) по dx
Ответы на вопрос:
1. интегрирование ведется по множеству 0 < x < 1, 0 < y < √(2x-x^2)
√(2x - x^2) принимает значения от 0 (x = 0) до 1 (x = 1), так что множество интегрирования является частью множеста 0 < x < 1, 0 < y < 1, где выполняется y < √(2x - x^2)
0 < y < √(2x - x^2) при 0 < x < 1 эквивалентно 0 < y^2 < 2x - x^2 = 1 - (1 - 2x + x^2) = 1 - (x-1)^2
т.е. (x-1)^2 < 1 - y^2
|x - 1| = 1 - x < √(1 - y^2)
x > 1 - √(1 - y^2)
ответ: интеграл от 0 до 1 по dy интеграл от 1 - √(1-y^2) до 1 f(x,y) по dx
2. 0 < y < 1, -√(1-y^2) < x < 1-y
-√(1-y^2) принимает значения от -1 (y = 0) до 0 (y = 1)
1 - y принимает значения от 0 (y = 1) до 1 (y = 0)
т.е. область интегрирования: -1 < x < 1, 0 < y < 1, где одновременно -√(1-y^2) < x и x < 1-y
x < 1 - y ~ y < 1 - x
-√(1-y^2) < x :
1) при x > 0 - любой y (от 0 до 1)
2) при x < 0:
√(1-y^2) > (-x) > 0
1 - y^2 > x^2
0 < y^2 < 1 - x^2
0 < y < √(1 - x^2)
т.е. исходные условия эквивалентны тому, что:
при x > = 0: y < 1 - x
при x < 0: одновременно y < √(1 - x^2) и y < 1 - x, но т.к. √(1 - x^2) < = 1 - x при x < 0, достаточно условия y < √(1 - x^2)
ответ: (интеграл от -1 до 0 по dx интеграл от 0 до √(1 - x^2) f(x,y) по dy) + (интеграл от 0 до 1 по dx интеграл от 0 до 1 - x f(x,y) по dy)
или, что то же самое, интеграл от -1 до 1 по dx от 0 до min{ 1 - x, √(1 - x^2) } f(x,y) по dy
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
PalkaDavalka05.02.2021 17:19
-
Чикама30.04.2020 11:45
-
Sergovseznaet14.04.2022 06:51
-
daffar1daffari27.01.2021 06:01
-
Rixoz28.12.2021 17:27
-
Aelly25.05.2022 10:57
-
Ямайкамафака28.05.2020 14:54
-
Андріана111111110.05.2022 07:07
-
darkdemonsown3mz02.02.2022 13:43
-
ДарьяСв13.09.2021 18:39
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.