Ответы на вопрос:
докажем методом индукции, что
13^(n+2) + 14^(2n+1) кратно 183
база индукции. n=1. 13^(n+2) + 14^(2n+1)=13^(1+2)+14^(2*1+1)=4941 кратно 183
(4941=183*)
гипотеза индукции. пусть при n=k выполняется 13^(n+2) + 14^(2n+1)=13^(к+2) + 14^(2к+1) кратно 183
индукционный переход. докажем что тогда при n=k+1 выполянется 13^(n+2) + 14^(2n+1)=13^(k+1+2)+14^(2(k+1)+1)=13^(k+3) + 14^(2k+3) кратно 183
13^(k+3) + 14^(2k+3)=13* 13^(k+2)+14^2 * 14^(2k+1)=
=13* 13^(k+1)+196* 14^(2k+1)=13*(13^(k+1)+ 14^(2k+1))+183*14^(2k+1) кратно 183, в каждом из полученных слагаемых есть множитель кратный 183 (13^(k+1)+ 14^(2k+1) кратно по гипотезе индукции, а во втором слагаемом (произведении) множитель 183 кратный 183), а значит и сумма кратна 183 (как сумма двух чисел кратных 183).
по методу индукции утверждение верно для любого n
доказано
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
nikitakyznecov70304.06.2023 08:54
-
Meshnyakova5223.12.2020 16:12
-
Aza3lo04.05.2020 05:37
-
vova0109200520.07.2022 20:45
-
yakubovmalik12.01.2022 15:06
-
abeloglazova89116.04.2023 20:10
-
ЭдикБел01.11.2022 08:03
-
nikitalazarev4ozvc3315.03.2023 11:11
-
EgorWater19.08.2020 21:48
-
oldtelephone2006.09.2020 18:20
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.