Ответы на вопрос:
Согласно определению периодической функции, функция f (x) является периодической, а число Т ≠ 0 ее периодом, если для любых значений переменной х выполняется равенство f(x) = f(x + Т).
1) f(x) = sin x/4,T = 8π.
Используя тот факт, что функция sin x является периодической с периодом 2π, получаем:
sin ((x + 8π)/4) = sin (x/4 + 8π/4) = sin (x/4 + 2π) = sin (x/4).
Следовательно, функция f(x)=sin x/4 является периодической с периодом 8π.
2) f (x) = 3cos2x, T = π.
Используя тот факт, что функция cos x является периодической с периодом 2π, получаем:
3cos(2 * (x + π)) = 3cos(2 * x + 2 * π) = 3cos(2 * x) = 3cos2х.
Следовательно, функция f (x) = 3cos2x является периодической с периодом π.
3) f(x) = tg3x, T= π/3.
Используя тот факт, что функция tg x является периодической с периодом π, получаем:
tg(3 * (x + π/3)) = tg(3 * x + 3π/3) = tg(3x + π) = tg3x.
Следовательно, функция f (x) = tg3x является периодической с периодом π/3.
4) f(x) = ctg x/4, T = 4π.
Используя тот факт, что функция сtg x является периодической с периодом π, получаем:
сtg((х + 4π)/4) = ctg(x/4+ 4π/4) = ctg(x/4 + π) = ctgx/4.
Следовательно, функция f (x) = ctg x/4 является периодической с периодом 4π.
:3
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
grachikovaleksei17.12.2020 12:39
-
anyapletneva028.05.2023 09:02
-
КкапризЗ07.08.2021 14:38
-
Whitestar12318.03.2021 19:51
-
yasuper07p0ad9l09.06.2020 04:20
-
leragoroshkova22.12.2021 15:28
-
kanumah216.02.2022 09:20
-
kozlovvlad2131.05.2021 21:28
-
125VikA12513.02.2023 04:21
-
ryzhij16.04.2023 21:27
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.