Ответы на вопрос:
x²-4≠0
x²≠4
x≠-2 ∧ x≠2
[tex]\\\left|\frac{x^2-5x+4}{x^2-4}\right|\leq1\\ \left|\frac{x^2-5x+4}{x^2-4}\right|\leq\frac{x^2-4}{x^2-4}\\\\ \frac{x^2-5x+4}{x^2-4}\leq\frac{x^2-4}{x^2-4}\\ \frac{x^2-5x+4}{x^2-4}-\frac{x^2-4}{x^2-4}\leq0\\ \frac{-5x+8}{x^2-4}\leq 0 |\cdot( x^2-4)^2\\ (-5x+8)(x^2-4)\leq0\\ -(5x-8)(x-2)(x+2)\leq 0\\
x_0=\frac{8}{5} \vee x_0=2 \vee x_0=-2\\ x\in(-2,\frac{8}{5})\cup(2,\infty)\\\\ \frac{x^2-5x+4}{x^2-4}\geq-\frac{x^2-4}{x^2-4}\\ \frac{x^2-5x+4}{x^2-4}+\frac{x^2-4}{x^2-4}\geq0\\ \frac{2x^2-5x}{x^2-4}\geq 0 |\cdot( x^2-4)^2\\ (2x^2-5x)(x^2-4)\geq0\\ x(2x-5)(x-2)(x+2)\geq 0\\ x_0=0 \vee x_0=\frac{5}{2}\vee x_0=2 \vee x_0=-2\\ x\in(-\infty,-2)\cup(0,2)\cup(\frac{5}{2},\infty)\\\\ ,\frac{8}{5})\cup(2,\infty)),-2)\cup(0,2)\cup(\frac{5}{2},{-2,2\}\\\underline{x\in(0,\frac{8}{5})\cup(\frac{5}{2},\infty)}
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
dashvali27.05.2020 19:30
-
Gggg2563220.11.2020 21:39
-
yanashabanova126.05.2020 08:08
-
motya1043208.10.2022 08:27
-
КираГринРоуз14.11.2021 21:21
-
Супер100919.03.2022 12:53
-
mkolok3205.05.2021 20:35
-
simonlol9805.02.2023 18:06
-
StacyZviozdohkina24.05.2023 01:46
-
Mashka2004yandezlive19.10.2021 03:53
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.