На доске выписаны числа 1,. на каждом этапе одновременно стираются все числа, не имеющие среди нестертых ранее чисел делителей, кроме самого себя. например, на первом стирается только число 1. на каком этапе будет стерто число 2015? подробно напишите,
Ответы на вопрос:
а) на доске выписаны числа 1, 2, 4, 8, 16, 32, 64, 128. разрешается стереть любые два числа и вместо них выписать их разность – неотрицательное число. после семи таких операций на доске будет только одно число. может ли оно равняться 97?
б) на доске выписаны числа 1, 21, 2², 2³, 210. разрешается стереть любые два числа и вместо них выписать их разность – неотрицательное число. после нескольких таких операций на доске будет только одно число. чему оно может быть равно?
решение
a) получить 97 можно, например, так. последовательно вычитая из 16 числа 8, 4, 2, 1, получим 1. на доске остались числа 1, 32, 64, 128. далее: бикю 64 – 32 = 32, 32 – 1 = 31, 128 – 31 = 97.
б) докажем, что если на доске выписаны числа 1, 2, 2n, то после n операций, описанных в условии, может получиться любое нечётное число от 1 до 2n – 1. очевидно, числа, большие 2n, на доске не появляются. легко видеть также, что на доске всегда присутствует ровно одно нечётное число. значит, и последнее оставшееся на доске число нечётно. утверждение о том, что все указанные числа построить можно, докажем индукцией по n.
база. имея числа 1 и 2, можно получить только число 1.
шаг индукции. пусть на доске выписаны числа 1, 2, 2n+1. любое нечётное число, меньшее 2n, можно получить за n + 1 операцию (на первом шаге сотрём 2n+1 и 2n и напишем 2n, далее по предположению индукции). нечётные числа от 2n + 1 до 2n+ 1 – 1 можно записать в виде 2n+1 – a, где число a можно получить из набора 1, 2, 2n. на последнем шаге из 2n+1 вычитаем a.
ответ
а) может; б) любому нечётному числу от 1 до 210 – 1.
замечания
: 2 + 3
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
mur18109.05.2023 20:51
-
arturdadayan20.05.2023 21:54
-
Мaрсс12.08.2020 04:48
-
statarincev201931.10.2020 07:37
-
vvasilchenkosn02.08.2020 08:44
-
кккосомомкамилла32709.12.2021 18:59
-
yul1975869411.04.2022 17:27
-
НагецБлайзер09.10.2022 22:16
-
муратмурмур19.04.2021 23:48
-
Valeriag20003406.08.2020 11:09
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.