Есть ответ 👍

Уже 3 дня не могу понять: докажите методом индукции, что: 1) 0∧n = 0 для любого натурального n; w 2) если 0 ≤ a < b, то a∧n < b∧n для любого натурального n; 3) a∧n b∧n = (ab)∧n для любого натурального n; 4) (a∧n)∧m = a∧nm для любых натуральных m и n.

169
414
Посмотреть ответы 2

Ответы на вопрос:

gyukk
4,8(70 оценок)

Доказательство проводится в 3 шага. 1 пример. 1шаг- проверяем при n=1: 0^1=0 -верно; 2шаг- предполагаем, что исходное (т.е. 0^n=0) верно при n=k, k€n: 0^k=0 -верное 3 шаг- доказываем, что равенство верно и при n=k+1: 0^(k+1)=0^k•0^1=0•0=0 - первый сомножитель верный 0 согласно п.2, второй согласно п.1, значит 0^n=0 верно для любого натурального n, ч.т.д. 2 пример. 1) при n=1 a^1< b^1, а< b -выполняется; 2) полагаем, что при n=k a^k< b^k тоже выполняется 3) проверяем при n=k+1: a^(k+1)< b^(k+1), a^k•a^1< b^k•b^1, а^k•а< b^k•b согласно свойству неравенства одинаковых знаков с положительными членами можно почленно умножать и делить, следовательно, полученное неравенство верное для n=k+1, значит и для любого n. ч.т.д. 3 пример 1) n=1, a^1•b^1=a•b=(ab)^1 верно; 2) полагаем, что при n=k a^k•b^k=(ab)^k -верное; 3) проверяем при n=k+1, используя свойства показателей: a^(k+1)•b^(k+1)= a^k•a^1•b^k•b^1= (ab)^k•(ab)^1 сомножители верны согласно п.2 и п.1, значит для любого натурального n a^n•b^n=(ab)^n, ч.т.д.
з1з1
4,4(43 оценок)

55

там куча вычеслений лень обтясняьь

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS