Есть ответ 👍

Дана функция f(x)=(3-2x)^6 найдите f`(1)

127
442
Посмотреть ответы 2

Ответы на вопрос:

OoMaRиNкАoO
4,7(70 оценок)

Для начала найдем производную f'(x)= 6*(3-2x)^5*(3-2x)'=-12*(3-2x)^5; f'(1)=-12*(3-2*1)^5= -12. ответ: -12. gl.
Timuar
4,8(46 оценок)

4)\;  \;  \frac{x-y}{x^{\frac{1}{2}}+y^{\frac{1}{2}}}=\frac{(x^{\frac{1}{2}}-y^{\frac{1}{2}})(x^{\frac{1}{2}}+y^{\frac{1}{2}})}{x^{\frac{1}{2}}+y^{\frac{1}{2}}}=x^{\frac{1}{2}}-y^{\frac{1}{2}}

5)\;  \;  \big (\frac{\sqrt[4]{x}+\sqrt[4]{y}}{\sqrt[4]{x}-\sqrt[4]{y}}-\frac{\sqrt[4]{x}-\sqrt[4]{y}}{\sqrt[4]{x}+\sqrt[4]{y}}\big ) \cdot \big (y^{-\frac{1}{2}}-x^{-\frac{1}{2}}\big )==\frac{(\sqrt[4]{x}+\sqrt[4]{y})^2-(\sqrt[4]{x}-\sqrt[4]{y})^2}{(\sqrt[4]{x}-\sqrt[4]{y}{x}+\sqrt[4]{y})}\cdot \big (\frac{1}{\sqrt{y}}-\frac{1}{\sqrt{x}}\big )=\frac{4\sqrt[4]{xy}}{\sqrt{x}-\sqrt{y}}\cdot \frac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}=\frac{4}{\sqrt[4]{xy}}=\frac{4\sqrt[4]{x^3y^3}}{xy}

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS