Есть ответ 👍

Доказать, что при любом натруальном n число 5^n-3^n+2n делится 4

205
470
Посмотреть ответы 2

Ответы на вопрос:


по мат индукции,   положим что выражение 5^n-3^n+2n делится на 4 при n, тогда оно делится на 4 при n+1. проверка при n=1 верна, тогда переход к n+1  

5*5^n-3*3^n+2n+2 = 5*(5^n-3^n+2n)-8n+2(3^n+1)  

то есть надо доказать что (3^n+1) делится на 2, что верно так как 3^n дает остаток 1 при делений на 2 , тогда 3^n+1 делится на 2 , значит, и все выражение делится на 4.  

jernova
4,6(88 оценок)

Числа соотносятся как 1: 1,5, что можно обозначить как 2x и 3х. 2х+3х=25 5х=25 х=5 1-ое 5*2=10 2-ое 3*5=10

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS